This paper presents the design of multilayer strip dipole antenna by stacking a flexible copper-clad laminate utilized for curved surface on the cylindrical objects. The designed antenna will reduce the effects of curving based on relative lengths that are changed in each stacking flexible copper-clad laminate layer. Curving is different from each layer of the antenna, so the resonance frequency that resulted from an extended antenna provides better frequency response stability compared to modern antenna when it is curved or attached to cylindrical objects. The frequency of multilayer antenna is designed at 920 MHz for UHF RFID applications.
This paper introduces a current-mode first-order all-pass filter (APF) and its application in quadrature oscillator (QO) based on CCCII. The proposed filter can provide inverting and noninverting all-pass functions with a same circuit topology, it uses two CCCIIs and one grounded capacitor. Moreover, the first-order all-pass filter was applied in current-mode sinusoidal quadrature oscillators with the design based on block diagrams. The introduced oscillators can provide four phase-quadrature signals which independently control the condition of oscillation (CO) and frequency of oscillation (FO). The proposed oscillators consist of three CCCIIs and two grounded capacitors. The proposed APF and QOs have high output impedance which can directly drive load without additional current buffer. In addition, they use only grounded capacitors which are very appropriate to future development into an integrated circuit. The results of PSPICE simulation program correspond to the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.