We show that mice lacking the ATP-binding cassette transmembrane transporter ABCG1 show progressive and age-dependent severe pulmonary lipidosis that recapitulates the phenotypes of different respiratory syndromes in both humans and mice. The lungs of chow-fed Abcg1 ؊/؊ mice, >6-months old, exhibit extensive subpleural cellular accumulation, macrophage, and pneumocyte type 2 hypertrophy, massive lipid deposition in both macrophages and pneumocytes and increased levels of surfactant. No such abnormalities are observed at 3 months of age. However, gene expression profiling reveals significant changes in the levels of mRNAs encoding key genes involved in lipid metabolism in both 3-and 8-month-old Abcg1 ؊/؊ mice. These data suggest that the lungs of young Abcg1 ؊/؊ mice maintain normal lipid levels by repressing lipid biosynthetic pathways and that such compensation is inadequate as the mice mature. Studies with A-549 cells, a model for pneumocytes type 2, demonstrate that overexpression of ABCG1 specifically stimulates the efflux of cellular cholesterol by a process that is dependent upon phospholipid secretion. In addition, we demonstrate that Abcg1 ؊/؊ , but not wild-type macrophages, accumulate cholesterol ester droplets when incubated with surfactant. Together, these data provide a mechanism to explain the lipid accumulation in the lungs of Abcg1 ؊/؊ mice. In summary, our results demonstrate that ABCG1 plays essential roles in pulmonary lipid homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.