Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and N-CDNI-Glu. We included a study of their photocleavage properties using UV-vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABA receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools.
Organocatalysis is an emerging field in which small metal-free organic structures catalyze a diversity of reactions with remarkable stereoselectivity. The ability to selectively switch on such pathways upon demand has proven to be a valuable tool in biological systems. Light as a trigger provides the ultimate spatial and temporal control of activation. However, there have been limited examples of photo triggered catalytic systems. Herein, we describe the synthesis and application of a caged proline system that can initiate organocatalysis upon irradiation. The caged proline was generated using the highly efficient 4-carboxy-5,7-dinitroindolinyl (CDNI) photocleavable protecting group in a 4-step synthesis. Advantages of this system include water solubility, biocompatibility, high quantum yield for catalyst release, and responsiveness to two-photon excitation. We showed the light triggered catalysis of a crossed aldol, a Mannich, and a self-aldol condensation reaction. We also demonstrated light initiated catalysis leading to the formation of a biocide in situ, which resulted in the growth inhibition of E. coli, with as little as 3 minutes of irradiation. This technique can be broadly applied to other systems by which the formation of active forms of drugs can be catalytically assembled remotely via two-photon irradiation.
The 7-nitroindolinyl family of caging chromophores has received much attention in the past two decades. However, its uncaging mechanism is still not clearly understood. In this study, we performed state-of-the-art density functional theory calculations to unravel the photo-uncaging mechanism in its entirety, and we compared the probabilities of all plausible pathways. We found competition between a classical cyclization and an acyl migration pathway, and here we explain the electronic and steric reasons behind such competition. The migration mechanism possesses the characteristics of a combined Norrish type I and a 1,6-nitro-acyl variation of a Norrish type II mechanism, which is reported here for the first time. We also found negligible energetic differences in the uncaging mechanisms of the 4-methoxy-5,7-dinitroindolinyl (MDNI) cages and their mononitro analogues (MNI). We traced the experimentally observed improved quantum yields of MDNI to a higher population of the reactants in the triplet surface. This fact is supported by a more favorable intersystem crossing due to the availability of a higher number of triplet excited states with the correct symmetry in MDNI than in MNI. Our findings may pave the way for improved cage designs that possess higher quantum yields and a more efficient agonist release.
The 7-nitroindolinyl family of caging chromophores has received much attention in the past two decades. However, its uncaging mechanism is still not clearly understood. In this study, we performed state-of-the-art density functional theory calculations to unravel the photo-uncaging mechanism in its entirety, and we compared the probabilities of all plausible pathways. We found competition between a classical cyclization and acyl migration pathways, and here we explain the electronic and steric reasons behind such competition. The migration mechanism possesses the characteristics of a combined Norrish Type I and a 1,6-nitro-acyl variation of a Norrish Type II mechanism, which is reported here for the first time. We also introduced a computational procedure that allows the estimation of intersystem crossing rate constants useful to compare the relative quantum yield of substituted cages. This procedure may pave the way for improved cage designs that possess higher quantum yields and a more efficient agonist release.<br>
The 7-nitroindolinyl family of caging chromophores has received much attention in the past two decades. However, its uncaging mechanism is still not clearly understood. In this study, we performed state-of-the-art density functional theory calculations to unravel the photo-uncaging mechanism in its entirety, and we compared the probabilities of all plausible pathways. We found competition between a classical cyclization and acyl migration pathways, and here we explain the electronic and steric reasons behind such competition. The migration mechanism possesses the characteristics of a combined Norrish Type I and a 1,6-nitro-acyl variation of a Norrish Type II mechanism, which is reported here for the first time. We also introduced a computational procedure that allows the estimation of intersystem crossing rate constants useful to compare the relative quantum yield of substituted cages. This procedure may pave the way for improved cage designs that possess higher quantum yields and a more efficient agonist release.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.