The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.
The majority of continental crust formed during the hotter Archean was composed of Tonalite-Trondhjemite-Granodiorite (TTG) rocks. In contrast to the present-day loci of crust formation around subduction zones and intra-plate tectonic settings, TTGs are formed when hydrated basalt melts at garnet-amphibolite, granulite or eclogite facies conditions. Generating continental crust requires a two step differentiation process. Basaltic magma is extracted from the pyrolytic mantle, is hydrated, and then partially melts to form continental crust. Here, we parameterise the melt production and melt extraction processes and show self-consistent generation of primordial continental crust using evolutionary thermochemical mantle convection models. To study the growth of TTG and the geodynamic regime of early Earth, we systematically vary the ratio of intrusive (plutonic) and eruptive (volcanic) magmatism, initial core temperature, and internal friction coefficient. As the amount of TTG that can be extracted from the basalt (or basalt-to-TTG production efficiency) is not known, we also test two different values in our simulations, thereby limiting TTG mass to 10% or 50% of basalt mass. For simulations with lower basalt-to-TTG production efficiency, the volume of TTG crust produced is in agreement with net crustal growth models but overall crustal (basaltic and TTG) composition stays more mafic than expected from geochemical data. With higher production efficiency, abundant TTG crust is produced, with a production rate far exceeding typical net crustal growth models but the felsic to mafic crustal ratio follows the expected trend. These modelling results indicate that (i) early Earth exhibited a "plutonic squishy lid" or vertical-tectonics geodynamic regime, (ii) present-day slab-driven subduction was not necessary for the production of early continental crust, and (iii) the Archean Earth was dominated by intrusive magmatism as opposed to "heat-pipe" eruptive magmatism.
We estimate the maximum geothermal potential in Germany available for exploitation by operated engineered geothermal systems (EGS). To this end, we assume that (a) capabilities for creating sufficient permeability in engineered deep heat exchange systems will become available in the future and (b) it will become possible to implement multiple wells in the reservoir for extending the rock volume accessible by water circulation for increasing the heat yield. While these assumptions may be challenged as far too optimistic, they allow for testing the potential of EGS, given the required properties, in countries lacking natural steam reservoirs. With this aim, we model numerically the thermal and electric energies which may be delivered by such systems by solving coupled partial differential equations governing fluid flow and heat transport in a porous medium. Thus, our model does not represent the engineered fractures in their proper physical dimension but rather distributes their flow volume in a small region of enhanced permeability around them. By varying parameters in the subsurface, such as flow rates and well separations, we analyze the long-term performance of this engineered reservoir. For estimating the maximum achievable potential for EGS in Germany, we assume the most optimistic conditions, realizing that these are unlikely to prevail. Considering the available crystalline landmass and accounting for the competing land uses, we evaluate the overall EGS potential and compare it with that of other renewables used in Germany. Under most optimistic assumptions, the land surface available for emplacing EGS would support a maximum of 13,450 EGS plants each comprising 18 wells and delivering an average electric power of 35.3 MW e. When operated at full capacity, these systems collectively may supply 4155 TWh of electric energy in 1 year which would be roughly seven times the electric energy produced in Germany in the year 2011. Thus, our study suggests that major scientific, engineering, and financial efforts are justified for developing the drilling and stimulation technologies required for creating the permeabilities required for successful EGS. Then, EGS will have great potential for contributing towards national power production in a future powered by sustainable, decentralized energy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.