This article reports on the extraction and characterization of novel natural cellulose fibers obtained from the maize (tassel) plant. Cellulose was extracted from the agricultural residue (waste biomaterial) of maize tassel. The maize tassel fibers were obtained after treatment with NaOH and were carefully characterized while the chemical composition was determined. The chemical composition of the maize tassel fibers showed that the cellulose content increased from 41% to 56%, following alkali treatment. FT-IR spectroscopic analysis of maize tassel fibers confirmed that this chemical treatment also shows the way to partial elimination of hemicelluloses and lignin from the structure of the maize tassel fibers. X-ray diffraction results indicated that this process resulted in enhanced crystallinity of the maize tassel fibers. The thermal properties of the maize tassel fibers were studied by the TGA technique and were found to have improved significantly. The degradation temperature of the alkali-treated maize tassel fiber is higher than that of the untreated maize tassel fibers. This value convincingly showed the potential of maize tassel fibers for use in reinforced biocomposites and waste water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.