Sexual transmission of human immunodeficiency virus type 1 (HIV-1) most often results from productive infection by a single transmitted/founder (T/F) virus, indicating a stringent mucosal bottleneck. Understanding the viral traits that overcome this bottleneck could have important implications for HIV-1 vaccine design and other prevention strategies. Most T/F viruses use CCR5 to infect target cells and some encode envelope glycoproteins (Envs) that contain fewer potential N-linked glycosylation sites and shorter V1/V2 variable loops than Envs from chronic viruses. Moreover, it has been reported that the gp120 subunits of certain transmitted Envs bind to the gut-homing integrin α4β7, possibly enhancing virus entry and cell-to-cell spread. Here we sought to determine whether subtype C T/F viruses, which are responsible for the majority of new HIV-1 infections worldwide, share biological properties that increase their transmission fitness, including preferential α4β7 engagement. Using single genome amplification, we generated panels of both T/F (n = 20) and chronic (n = 20) Env constructs as well as full-length T/F (n = 6) and chronic (n = 4) infectious molecular clones (IMCs). We found that T/F and chronic control Envs were indistinguishable in the efficiency with which they used CD4 and CCR5. Both groups of Envs also exhibited the same CD4+ T cell subset tropism and showed similar sensitivity to neutralization by CD4 binding site (CD4bs) antibodies. Finally, saturating concentrations of anti-α4β7 antibodies failed to inhibit infection and replication of T/F as well as chronic control viruses, although the growth of the tissue culture-adapted strain SF162 was modestly impaired. These results indicate that the population bottleneck associated with mucosal HIV-1 acquisition is not due to the selection of T/F viruses that use α4β7, CD4 or CCR5 more efficiently.
We report the first known case of transfusion-transmitted HBV infection by blood screened using ID-NAT giving an observed HBV transmission rate of 0.34 per million. The estimated pre-acute-phase transmission risk in the ID-NAT screened donor population was 73-fold higher than the observed WP transmission rate.
BACKGROUND
Several comparison studies showed that the Ultrio assay (Novartis Diagnostics) used in individual-donation nucleic acid amplification testing (ID-NAT) format was as sensitive as the TaqScreen assay (Roche) on minipools of six donations (MP6), but the sensitivity of HBV DNA detection has been improved in the new Ultrio Plus version of the assay. A head-to-head comparison study was designed to compare the clinical sensitivity of the Ultrio and Ultrio Plus assay in ID, MP4, and MP8 formats using TaqScreen MP6 as a reference assay.
STUDY DESIGN AND METHODS
Plasma samples of 107 hepatitis B surface antigen (HBsAg)-negative, HBV ID-NAT (Ultrio) positive-yield samples and 29 HBV DNA–negative, HBsAg-positive samples were used for comparison of NAT options in replicate testing of dilutions. Viral loads and relative sensitivities were determined by probit analysis against the Eurohep standard.
RESULTS
Ultrio Plus detected a significantly (p < 0.00001) higher proportion of replicate assays on HBV NAT yields (77%) than Ultrio ID (62%) and TaqScreen MP6 (47%), whereas Ultrio Plus MP4 and MP8 detected 53 and 41%, respectively. On HBsAg-yield samples missed by Ultrio screening, the reactivity rate increased significantly (p < 0.0001) from 23% in Ultrio to 65% in Ultrio Plus and further to 72% (p = 0.10) in the TaqScreen assay. The overall improvement factor of the analytical sensitivity offered by the target enhancer reagent in the Ultrio Plus assay was 2.5 (2.0–3.1)-fold on the Ultrio yield samples, but 43 (11–350)-fold on the HBsAg yields. In ID-NAT format the analytical sensitivity of TaqScreen relative to Ultrio Plus was 2.0 (1.0–4.2), 0.9 (0.7–1.3), and 1.6 (0.9–3.0) on the Eurohep standard, HBV NAT–, and HBsAg-yield samples respectively.
CONCLUSION
The clinical sensitivity of the currently available commercial NAT methods is mainly driven by the pool size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.