The active R2 protein of ribonucleotide reductase from Escherichia coli contains a catalytically essential tyrosine radical at position 122 (Tyr122.) that is formed during the reaction of dioxygen with the nearby diiron(II) center. To gain insight into the mode of dioxygen binding, the reaction of the O2 analog NO with the diiron(II) centers of R2red has been investigated by spectroscopic methods. R2red reacts with NO to form an adduct with visible absorption features at 450 and 620 nm and Mössbauer parameters (delta = 0.75 mm/s, delta EQ = -2.13 and -1.73 mm/s) typical of those observed for S = 3/2 [FeNO]7 complexes of other non-heme iron proteins. However, unlike other non-heme [FeNO]7 complexes, this adduct is EPR silent. Our Mössbauer studies show that each iron site of R2red binds one NO to form local S = 3/2 [FeNO]7 centers which then couple antiferromagnetically (J approximately 5 cm-1, H = JS1.S2) to afford an [FeNO]2 center (77% of total iron). This [FeNO]2 center decomposes with a first-order rate constant of 0.013 min-1 to form R2met, accompanied by the release of N2O. These observations suggest that both iron(II) ions of the two diiron(II) centers of R2red have available sites for NO binding, in agreement with the crystallographic results on R2red, and that the bound NO molecules are sufficiently close to each other to permit N-N bond formation to produce N2O. These observations support the proposal that dioxygen binding may also involve both metal ions of the diiron(II) center to form a (mu-1,1-, or mu-1,2-peroxo)-diiron(III) center. This observed reactivity of R2red with NO may contribute to the in vivo inhibition of ribonucleotide reductase by NO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.