The analysis of immune responses in diverse malaria endemic regions provides more information to understand the host’s immune response to Plasmodium falciparum. Several plasmodial antigens have been reported as targets of human immunity. PfAMA1 is one of most studied vaccine candidates; PfRH5 and Pf113 are new promising vaccine candidates. The aim of this study was to evaluate humoral response against these three antigens among children of Lastourville (rural area) and Franceville (urban area). Malaria was diagnosed using rapid diagnosis tests. Plasma samples were tested against these antigens by enzyme-linked immunosorbent assay (ELISA). We found that malaria prevalence was five times higher in the rural area than in the urban area (p < 0.0001). The anti-PfAMA1 and PfRh5 response levels were significantly higher in Lastourville than in Franceville (p < 0.0001; p = 0.005). The anti-AMA1 response was higher than the anti-Pf113 response, which in turn was higher than the anti-PfRh5 response in both sites. Anti-PfAMA1 levels were significantly higher in infected children than those in uninfected children (p = 0.001) in Franceville. Anti-Pf113 and anti-PfRh5 antibody levels were lowest in children presenting severe malarial anemia. These three antigens are targets of immunity in Gabon. Further studies on the role of Pf113 in antimalarial protection against severe anemia are needed.
The search for novel chemical classes of anti-malarial compounds to cope with the current state of chemoresistance of malaria parasites has led to the identification of Plasmodium falciparum aminopeptidase 1 (PfA-M1) as a new therapeutic target. PfA-M1, known to be involved in the hemoglobin digestion cascade which helps to provide most of the amino acids necessary to the parasite's metabolism, is currently considered as a promising target for anti-malarial chemotherapy. However, its immunogenic properties have not yet been tested in the Gabonese population. In Gabon, the prevalence of malaria remains three times higher in semi-urban areas (60·12%) than in urban areas (17·06%). We show that malaria-specific PfA-M1 antibodies are present in children and increase with the level of infection. Children living in semi-urban areas have higher anti-PfA-M1 antibody titers (0·14 ± 0·02 AU) than those living in urban areas (0·08 ± 0·02 AU, P = 0·03), and their antibody titers increase with age (P < 0·0001). Moreover, anti-PfA-M1 antibody titers decrease in children with hyperparasitemia (0·027 ± 0·055 AU) but they remain high in children with low parasite density (0·21 ± 0·034 AU, P = 0·034). In conclusion, our results suggest that malariaspecific PfA-M1 antibodies may play an important role in the immune response of the host against P. falciparum in Gabonese children. Further studies on the role of PfA-M1 during anemia are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.