The gastrointestinal tract (GIT) health impacts animal productivity. The poultry microbiome has functions which range from protection against pathogens and nutrients production, to host immune system maturation. Fluctuations in the microbiome have also been linked to prevailing environmental conditions. Healthy poultry birds possess a natural resistance to infection. However, the exploration of environmental impacts and other relevant factors on poultry growth and health have been underplayed. Since good performance and growth rate are central to animal production, the host-microbiome relationship remains integral. Prior to the emergence of metagenomic techniques, conventional methods for poultry microbiome studies were used and were low-throughput and associated with insufficient genomic data and high cost of sequencing. Fortunately, the advent of high-throughput sequencing platforms have circumvented some of these shortfalls and paved the way for increased studies on the poultry gut microbiome diversity and functions. Here, we give an up-to-date review on the impact of varied environments on microbiome profile, as well as microbiome engineering and microbiome technology advancements. It is hoped that this paper will provide invaluable information that could guide and inspire further studies on the lingering pertinent questions about the poultry microbiome.
Recently, dipeptidyl peptidase-IV (DPP-IV) has become an effective target in the management of type-2 diabetes mellitus (T2D). The study aimed to determine the efficacy of shikimate pathway-derived phenolic acids as potential DPP-IV modulators in the management of T2D. The study explored in silico (molecular docking and dynamics simulations) and in vitro (DPP-IV inhibitory and kinetics assays) approaches. Molecular docking findings revealed chlorogenic acid (CA) among the examined 22 phenolic acids with the highest negative binding energy (−9.0 kcal/mol) showing a greater affinity for DPP-IV relative to the standard, Diprotin A (−6.6 kcal/mol). The result was corroborated by MD simulation where it had a higher affinity (−27.58 kcal/mol) forming a more stable complex with DPP-IV than Diprotin A (−12.68 kcal/mol). These findings were consistent with in vitro investigation where it uncompetitively inhibited DPP-IV having a lower IC50 (0.3 mg/mL) compared to Diprotin A (0.5 mg/mL). While CA showed promising results as a DPP-IV inhibitor, the findings from the study highlighted the significance of medicinal plants particularly shikimate-derived phenolic compounds as potential alternatives to synthetic drugs in the effective management of T2DM. Further studies, such as derivatisation for enhanced activity and in vivo evaluation are suggested to realize its full potential in T2D therapy.
Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of the insulin signaling pathway, has gained attention as a validated druggable target in the management of type 2 diabetes mellitus (T2DM). The lack of clinically approved PTP1B inhibitors has continued to prompt research in plant-derived therapeutics possibly due to their relatively lesser toxicity profiles. Flavonoid C-glycosides are one of the plant-derived metabolites gaining increased relevance as antidiabetic agents, but their possible mechanism of action remains largely unknown. This study investigates the antidiabetic potential of flavonoid C-glycosides against PTP1B in silico and in vitro. Of the seven flavonoid C-glycosides docked against the enzyme, three compounds (apigenin, vitexin, and orientin) had the best affinity for the enzyme with a binding score of –7.3 kcal/mol each, relative to –7.4 kcal/mol for the reference standard, ursolic acid. A further probe (in terms of stability, flexibility, and compactness) of the complexes over a molecular dynamics time study of 100 ns for the three compounds suggested orientin as the most outstanding inhibitor of PTP1B owing to its overall -34.47 kcal/mol binding energy score compared to ursolic acid (-19.24 kcal/mol). This observation was in accordance with the in vitro evaluation result, where orientin had a half maximal inhibitory concentration (IC50) of 0.18 mg/ml relative to 0.13 mg/ml for the reference standard. The kinetics of inhibition of PTP1B by orientin was mixed-type with V max and K m values of 0.004 μM/s and 0.515 μM. Put together, the results suggest orientin as a potential PTP1B inhibitor and could therefore be further explored in the management T2DM as a promising therapeutic agent.
Plants produce an array of secondary metabolites identified as possible antimicrobialagents that are used across the globe to treat numerous diseases and ailments.These secondary metabolites serve as unique commercial sources of variouspharmaceuticals, food additives and flavouring agents, and possess diverse industrialapplications. Alkaloids, flavonoids, and polyphenols are secondary metabolites shownto attack numerous gram-positive and gram negative bacteria in response to microbialinfections. Secondary plant metabolites have a detrimental effect on microbial cells inseveral ways, such as alteration of the structure and function of the cytoplasmicmembrane as well as DNA/RNA synthesis, interference with intermediary metabolism,interaction with membrane proteins, a disruption in the movement of protons leading toion leakage, enzyme synthesis inhibition, the clotting of cytoplasmic components andinterference in typical cell communication. This ultimately results in cell death. Thefocus of this chapter is to provide an overview of the function and benefits of plantsecondary metabolites as therapeutic agents to combat pathogenic bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.