Contact charge electrophoresis (CCEP) uses steady electric fields to drive the continuous, oscillatory motion of conductive particles and droplets between two or more electrodes. These rapid oscillations can be rectified to direct the motion of objects within microfluidic environments using low-power, dc voltage. Here, we compare high precision experimental measurements of CCEP within a microfluidic system to equally detailed theoretical predictions on the motion of a conductive particle between parallel electrodes. We use a simple, capillary microfluidic platform that combines high-speed imaging with precision electrical measurements to enable the synchronized acquisition of both the particle location and the electric current due to particle motion. The experimental results are compared to those of a theoretical model, which relies on a Stokesian dynamics approach to accurately describe both the electrostatic and hydrodynamic problems governing particle motion. We find remarkable agreement between theory and experiment, suggesting that particle motion can be accurately captured by a combination of classical electrostatics and low-Reynolds number hydrodynamics. Building on this agreement, we offer new insight into the charge transfer process that occurs when the particle nears contact with an electrode surface. In particular, we find that the particle does not make mechanical contact with the electrode but rather that charge transfer occurs at finite surface separations of >0.1 μm by means of an electric discharge through a thin lubricating film. We discuss the implications of these findings on the charging of the particle and its subsequent dynamics.
Contact charge electrophoresis (CCEP) uses steady electric fields to drive the oscillatory motion of conductive particles and droplets between two or more electrodes. In contrast to traditional forms of electrophoresis and dielectrophoresis, CCEP allows for rapid and sustained particle motions driven by low-power dc voltages. These attributes make CCEP a promising mechanism for powering active components for mobile microfluidic technologies. This Feature Article describes our current understanding of CCEP as well as recent strategies to harness it for applications in microfluidics and beyond.
We present a simple and effective ratcheted microfluidic mixer that uses contact charge electrophoresis (CCEP) of a micron-scale particle to rapidly mix nonpolar liquids. CCEP combines contact charging and electrostatic actuation to drive the continuous oscillatory motion of a conductive particle between two electrodes subject to a constant (DC) voltage. We show how this oscillatory motion can be harnessed to mix laminar flows by using dielectric "ramps" to direct the particle along non-reciprocal, orbital trajectories, which repeatedly stretch and fold the flowing streams. Complete mixing requires that the speed of the particle is much larger than the fluid velocity such that the particle completes many orbits as the fluid flows through the mixing region. The extent of mixing also depends strongly on the size of the particle and the shape of its trajectory; effective mixers relied on larger particles (comparable to the size of the channel) moving along non-reciprocal orbits. While the present study uses mineral oil as a convenient nonpolar liquid, we also screened fifteen common solvents to determine the applicability of CCEP for mixing other organic liquids. Owing to its simple design and low power requirements (~100 nW), the orbital mixer presented here demonstrates the utility and versatility of ratcheted electrostatic actuation in powering active microfluidic operations.
We investigate the dynamics of metallodielectric Janus particles moving via contact charge electrophoresis (CCEP) between two parallel electrodes. CCEP uses a constant voltage to repeatedly charge and actuate conductive particles within a dielectric fluid, resulting in rapid oscillatory motion between the electrodes. In addition to particle oscillations, we find that micrometer-scale Janus particles move perpendicular to the field at high speeds (up to 600 μm/s) and over large distances. We characterize particle motions and propose a mechanism based on the rotation-induced translation of the particle following charge transfer at the electrode surface. The propulsion mechanism is supported both by experiments with fluorescent particles that reveal their rotational motions and by simulations of CCEP dynamics that capture the relevant electrostatics and hydrodynamics. We also show that interactions among multiple particles can lead to repulsion, attraction, and/or cooperative motions depending on the position and phase of the respective particle oscillators. Our results demonstrate how particle asymmetries can be used to direct the motions of active colloids powered by CCEP.
The zeta potential of a particle characterizes its motion in an electric field and is often thought to be negligible at high ionic strength (several moles per liter) due to thinning of the electrical double layer (EDL). Here, we describe zeta potential measurements on polystyrene latex (PSL) particles at monovalent salt concentrations up to saturation (∼5 M NaCl) using electrophoresis in sinusoidal electric fields and high-speed video microscopy. Our measurements reveal that the zeta potential remains finite at even the highest concentrations. Moreover, we find that the zeta potentials of sulfated PSL particles continue to obey the classical Gouy-Chapman model up to saturation despite significant violations in the model's underlying assumptions. By contrast, amidine-functionalized PSL particles exhibit qualitatively different behaviors such as zero zeta potentials at high concentrations of NaCl and KCl and even charge inversion in KBr solutions. The experimental results are reproduced and explained by Monte Carlo simulations of a simple lattice model of the EDL that accounts for effects due to ion size and ion-ion correlations. At high salt conditions, the model suggests that quantitative changes in the magnitude of surface charge can result in qualitative changes in the zeta potential-most notably, charge inversion of highly charged surfaces. These findings have important implications for electrokinetic phenomena such as diffusiophoresis within salty environments such as oceans, geological reservoirs, and living organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.