During cytokinesis, global and equatorial pathways deform the cell cortex in a stereotypical manner, which leads to daughter cell separation. Equatorial forces are largely generated by myosin-II and the actin crosslinker, cortexillin-I. In contrast, global mechanics are determined by the cortical cytoskeleton, including the actin crosslinker, dynacortin. We used direct morphometric characterization and laser-tracking microrheology to quantify cortical mechanical properties of wild-type and cortexillin-I and dynacortin mutant Dictyostelium cells. Both cortexillin-I and dynacortin influence cytokinesis and interphase cortical viscoelasticity as predicted from genetics and biochemical data using purified dynacortin proteins. Our studies suggest that the regulation of cytokinesis ultimately requires modulation of proteins that control the cortical mechanical properties that establish the force-balance that specifies the shapes of cytokinesis. The combination of genetic, biochemical, and biophysical observations suggests that the cell's cortical mechanical properties control how the cortex is remodeled during cytokinesis.
Hybrid germanium/silica fibers represent a robust, flexible, and biocompatible method of delivering Er:YAG laser radiation during contact soft tissue ablation. However, significant improvement in the hybrid fibers will be necessary before they can be used for efficient Er:YAG laser lithotripsy.
The erbium:YSGG and erbium:YAG lasers are used for tissue ablation in dermatology, dentistry and ophthalmology. The purpose of this study was to compare germanium oxide and sapphire optical fibres for transmission of sufficient Q-switched erbium laser pulse energies for potential use in both soft and hard tissue ablation applications. Fibre transmission studies were conducted with Q-switched (500 ns) Er:YSGG (lambda=2.79 microm) and Er:YAG (lambda=2.94 microm) laser pulses delivered at 3 Hz through 1-m-long, 450-mum germanium oxide and 425-mum sapphire optical fibres. Transmission of free-running (300 micros) Er:YSGG and Er:YAG laser pulses was also conducted for comparison. Each set of measurements was carried out on seven different sapphire or germanium fibres, and the data were then averaged. Fibre attenuation of Q-switched Er:YSGG laser energy measured 1.3+/-0.1 dB/m and 1.0+/-0.2 dB/m for the germanium and sapphire fibres, respectively. Attenuation of Q-switched Er:YAG laser energy measured 0.9+/-0.3 dB/m and 0.6+/-0.2 dB/m, respectively. A maximum Q-switched Er:YSGG pulse energy of 42 mJ (26-30 J/cm(2)) was transmitted through the fibres. However, fibre tip damage was observed at energies exceeding 25 mJ (n=2). Both germanium oxide and sapphire optical fibres transmitted sufficient Q-switched Er:YSGG and Er:YAG laser radiation for use in both soft and hard tissue ablation. This is the first report of germanium and sapphire fibre optic transmission of Q-switched erbium laser energies of 25-42 mJ per pulse.
A prototype hybrid germanium/silica optical fiber demonstrated better performance than both germanium oxide and sapphire fibers for transmission of Er:YAG laser radiation during in vitro lithotripsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.