Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled .94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.A major opportunity for a sustainable energy and biomaterials economy in many parts of the world lies in a better understanding of the molecular basis of superior growth and adaptation in woody plants. Part of this opportunity involves species of Eucalyptus L'Hér, a genus of woody perennials native to Australia 1 . The remarkable adaptability of eucalypts coupled with their fast growth and superior wood properties has driven their rapid adoption for plantation forestry in more than 100 countries across six continents (.20 million ha) 2 , making eucalypts the most widely planted hardwood forest trees in the world. The subtropical E. grandis and the temperate E. globulus stand out as targets of breeding programmes worldwide. Planted eucalypts provide key renewable resources for the production of pulp, paper, biomaterials and bioenergy, while mitigating human pressures on native forests 3 . Eucalypts also have a large diversity and high concentration of essential oils (mixtures of mono-and sesquiterpenes), many of which have ecological functions as well as medicinal and industrial uses. Predominantly outcrossers 1 with hermaphroditic animal-pollinated flowers, eucalypts are highly heterozygous and display pre-and postzygotic barriers to selfing to reduce inbreeding depression for fitness and survival 4 .To mitigate the challenge of assembling a highly heterozygous genome, we sequenced the genome of 'BRASUZ1', a 17-year-old E. grandis genotype derived from one generation of selfing. The availability of annotated forest tree genomes from two separately evolving rosid lineages, Eucalyptus (order Myrtales) and Populus (order Malpighiales 5 ), in combination with genomes from domesticated woody plants (for example, Vitis, Prunus, Citrus), provides a comparative foundation for addressing
BackgroundTerpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts.ResultsThe genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus.ConclusionsOur data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1598-x) contains supplementary material, which is available to authorized users.
All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Despite some empirical counter examples, theory suggests that nonrecombining sex-linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole-genome scans that the sex-associated region in Populus trichocarpa is small and much younger than the age of the genus. This indicates that sex determination is highly labile in poplar, consistent with recent evidence of 'turnover' of sex-determination regions in animals. We performed whole-genome resequencing of 52 P. trichocarpa (black cottonwood) and 34 Populus balsamifera (balsam poplar) individuals of known sex. Genomewide association studies in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex-linked region to be ~100 kbp. All SNPs significantly associated with sex were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex-associated SNPs revealed this to be an XY sex-determining system. Estimated divergence times of X and Y haplotype sequences (6-7 Ma) are much more recent than the divergence of P. trichocarpa (poplar) and Populus tremuloides (aspen). Consistent with this, in P. tremuloides, we found no XY haplotype divergence within the P. trichocarpa sex-determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past.
BackgroundDe novo assembly of transcript sequences produced by short-read DNA sequencing technologies offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene sequences from multiple tissues and organs.ResultsWe present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcript-derived contigs, a large proportion of which represent full-length protein coding genes were assembled and annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is invaluable for ascribing putative gene functions.ConclusionsDe novo assembly of Illumina mRNA-Seq reads is an efficient approach for transcriptome sequencing and profiling in Eucalyptus and other non-model organisms. The transcriptome resource (Eucspresso, http://eucspresso.bi.up.ac.za/) generated by this study will be of value for genomic analysis of woody biomass production in Eucalyptus and for comparative genomic analysis of growth and development in woody and herbaceous plants.
Natural hybrid zones in forest trees provide systems to study the transfer of adaptive genetic variation by introgression. Previous landscape genomic studies in Populus trichocarpa, a keystone tree species, indicated genomic footprints of admixture with its sister species Populus balsamifera and identified candidate genes for local adaptation. Here, we explored the patterns of introgression and signals of local adaptation in P. trichocarpa and P. balsamifera, employing genome resequencing data from three chromosomes in pure species and admixed individuals from wild populations. Local ancestry analysis in admixed P. trichocarpa revealed a telomeric region in chromosome 15 with P. balsamifera ancestry, containing several candidate genes for local adaptation. Genomic analyses revealed signals of selection in certain genes in this region (e.g. PRR5, COMT1), and functional analyses based on gene expression variation and correlations with adaptive phenotypes suggest distinct functions of the introgressed alleles. In contrast, a block of genes in chromosome 12 paralogous to the introgressed region showed no signs of introgression or signatures of selection. We hypothesize that the introgressed region in chromosome 15 has introduced modular or cassette-like variation into P. trichocarpa. These linked adaptive mutations are associated with a block of genes in chromosome 15 that appear to have undergone neo- or subfunctionalization relative to paralogs in a duplicated region on chromosome 12 that show no signatures of adaptive variation. The association between P. balsamifera introgressed alleles with the expression of adaptive traits in P. trichocarpa supports the hypothesis that this is a case of adaptive introgression in an ecologically important foundation species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.