Although several studies have associated Mycobacterium ulcerans (MU) infection, Buruli ulcer (BU), with slow moving water bodies, there is still no definite mode of transmission. Ecological and transmission studies suggest Variable Number Tandem Repeat (VNTR) typing as a useful tool to differentiate MU strains from other Mycolactone Producing Mycobacteria (MPM). Deciphering the genetic relatedness of clinical and environmental isolates is seminal to determining reservoirs, vectors and transmission routes. In this study, we attempted to source-track MU infections to specific water bodies by matching VNTR profiles of MU in human samples to those in the environment. Environmental samples were collected from 10 water bodies in four BU endemic communities in the Ashanti region, Ghana. Four VNTR loci in MU Agy99 genome, were used to genotype environmental MU ecovars, and those from 14 confirmed BU patients within the same study area. Length polymorphism was confirmed with sequencing. MU was present in the 3 different types of water bodies, but significantly higher in biofilm samples. Four MU genotypes, designated W, X, Y and Z, were typed in both human and environmental samples. Other reported genotypes were only found in water bodies. Animal trapping identified 1 mouse with lesion characteristic of BU, which was confirmed as MU infection. Our findings suggest that patients may have been infected from community associated water bodies. Further, we present evidence that small mammals within endemic communities could be susceptible to MU infections. M. ulcerans transmission could involve several routes where humans have contact with risk environments, which may be further compounded by water bodies acting as vehicles for disseminating strains.
BackgroundWith the introduction of artemisinin-based combination therapy (ACT) in 2005, monitoring of anti-malarial drug efficacy, which includes the use of molecular tools to detect known genetic markers of parasite resistance, is important for first-hand information on the changes in parasite susceptibility to drugs in Ghana. This study investigated the Plasmodium falciparum multidrug resistance gene (pfmdr1) copy number, mutations and the chloroquine resistance transporter gene (pfcrt) mutations in Ghanaian isolates collected in seven years to detect the trends in prevalence of mutations.MethodsArchived filter paper blood blots collected from children aged below five years with uncomplicated malaria in 2003–2010 at sentinel sites were used. Using quantitative real-time polymerase chain reaction (qRT-PCR), 756 samples were assessed for pfmdr1 gene copy number. PCR and restriction fragment length polymorphism (RFLP) were used to detect alleles of pfmdr1 86 in 1,102 samples, pfmdr1 184, 1034, 1042 and 1246 in 832 samples and pfcrt 76 in 1,063 samples. Merozoite surface protein 2 (msp2) genotyping was done to select monoclonal infections for copy number analysis.ResultsThe percentage of isolates with increased pfmdr1 copy number were 4, 27, 9, and 18% for 2003–04, 2005–06, 2007–08 and 2010, respectively. Significant increasing trends for prevalence of pfmdr1 N86 (×2 = 96.31, p <0.001) and pfcrt K76 (×2 = 64.50, p <0.001) and decreasing trends in pfmdr1 Y86 (×2 = 38.52, p <0.001) and pfcrt T76 (×2 = 43.49, p <0.001) were observed from 2003–2010. The pfmdr1 F184 and Y184 prevalence showed an increasing and decreasing trends respectively but were not significant (×2 = 7.39,p=0.060; ×2 = 7.49, p = 0.057 respectively). The pfmdr1 N86-F184-D1246 haplotype, which is alleged to be selected by artemether-lumefantrine showed a significant increasing trend (×2 = 20.75, p < 0.001).ConclusionIncreased pfmdr1 gene copy number was observed in the isolates analysed and this finding has implications for the use of ACT in the country although no resistance has been reported. The decreasing trend in the prevalence of chloroquine resistance markers after change of treatment policy presents the possibility for future introduction of chloroquine as prophylaxis for malaria risk groups such as children and pregnant women in Ghana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.