Natural enemies respond to herbivore-induced plant volatiles (HIPVs), but an often overlooked aspect is that there may be genotypic variation in these 'indirect' plant defence traits within plant species. We found that egg deposition by stemborer moths (Chilo partellus) on maize landrace varieties caused emission of HIPVs that attract parasitic wasps. Notably, however, the oviposition-induced release of parasitoid attractants was completely absent in commercial hybrid maize varieties. In the landraces, not only were egg parasitoids (Trichogramma bournieri) attracted but also larval parasitoids (Cotesia sesamiae). This implies a sophisticated defence strategy whereby parasitoids are recruited in anticipation of egg hatching. The effect was systemic and caused by an elicitor, which could be extracted from egg materials associated with attachment to leaves. Our findings suggest that indirect plant defence traits may have become lost during crop breeding and could be valuable in new resistance breeding for sustainable agriculture.
Food insecurity is a chronic problem in Africa and is likely to worsen with climate change and population growth. It is largely due to poor yields of the cereal crops caused by factors including stemborer pests, striga weeds and degraded soils. A platform technology, ‘push–pull’, based on locally available companion plants, effectively addresses these constraints resulting in substantial grain yield increases. It involves intercropping cereal crops with a forage legume, desmodium, and planting Napier grass as a border crop. Desmodium repels stemborer moths (push), and attracts their natural enemies, while Napier grass attracts them (pull). Desmodium is very effective in suppressing striga weed while improving soil fertility through nitrogen fixation and improved organic matter content. Both companion plants provide high-value animal fodder, facilitating milk production and diversifying farmers’ income sources. To extend these benefits to drier areas and ensure long-term sustainability of the technology in view of climate change, drought-tolerant trap and intercrop plants are being identified. Studies show that the locally commercial brachiaria cv mulato (trap crop) and greenleaf desmodium (intercrop) can tolerate long droughts. New on-farm field trials show that using these two companion crops in adapted push–pull technology provides effective control of stemborers and striga weeds, resulting in significant grain yield increases. Effective multi-level partnerships have been established with national agricultural research and extension systems, non-governmental organizations and other stakeholders to enhance dissemination of the technology with a goal of reaching one million farm households in the region by 2020. These will be supported by an efficient desmodium seed production and distribution system in eastern Africa, relevant policies and stakeholder training and capacity development.
Farming systems for pest control, based on the stimulo-deterrent diversionary strategy or push-pull system, have become an important target for sustainable intensification of food production. A prominent example is push-pull developed in sub-Saharan Africa using a combination of companion plants delivering semiochemicals, as plant secondary metabolites, for smallholder farming cereal production, initially against lepidopterous stem borers. Opportunities are being developed for other regions and farming ecosystems. New semiochemical tools and delivery systems, including GM, are being incorporated to exploit further opportunities for mainstream arable farming systems. By delivering the push and pull effects as secondary metabolites, for example, (E)-4,8-dimethyl-1,3,7-nonatriene repelling pests and attracting beneficial insects, problems of high volatility and instability are overcome and compounds are produced when and where required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.