Cover crops (CCs) can provide multiple soil, agricultural production, and environmental benefits. However, a better understanding of such potential ecosystem services is needed. We summarized the current state of knowledge of CC effects on soil C stocks, soil erosion, physical properties, soil water, nutrients, microbial properties, weed control, crop yields, expanded uses, and economics and highlighted research needs. Our review indicates that CCs are multifunctional. Cover crops increase soil organic C stocks (0.1–1 Mg ha−1 yr−1) with the magnitude depending on biomass amount, years in CCs, and initial soil C level. Runoff loss can decrease by up to 80% and sediment loss from 40 to 96% with CCs. Wind erosion potential also decreases with CCs, but studies are few. Cover crops alleviate soil compaction, improve soil structural and hydraulic properties, moderate soil temperature, improve microbial properties, recycle nutrients, and suppress weeds. Cover crops increase or have no effect on crop yields but reduce yields in water‐limited regions by reducing available water for the subsequent crops. The few available studies indicate that grazing and haying of CCs do not adversely affect soil and crop production, which suggests that CC biomass removal for livestock or biofuel production can be another benefit from CCs. Overall, CCs provide numerous ecosystem services (i.e., soil, crop–livestock systems, and environment), although the magnitude of benefits is highly site specific. More research data are needed on the (i) multi‐functionality of CCs for different climates and management scenarios and (ii) short‐ and long‐term economic return from CCs.
The critical period for weed control (CPWC) is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. Field studies were conducted in 1999 and 2000 in eastern Nebraska to evaluate the influence of nitrogen application on the CPWC in dryland corn in competition with a naturally occurring weed population. Nitrogen fertilizer was applied at rates equivalent to 0, 60, and 120 kg N ha Ϫ1. A quantitative series of treatments of both increasing duration of weed interference and length of weed-free period were imposed within each nitrogen main plot. The beginning and end of the CPWC based on an arbitrarily 5% acceptable yield loss level were determined by fitting the logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed-free period, respectively. Despite an inconsistent response of corn grain yield to applied nitrogen, there was a noticeable influence on the CPWC. The addition of 120 kg N ha Ϫ1 delayed the beginning of the CPWC for all site-years when compared with the 0-kg N ha Ϫ1 rate and for three of the four site-years when compared with the 60-kg N ha Ϫ1 rate. The addition of 120 kg N ha Ϫ1 also hastened the end of the CPWC at three of the four site-years when compared with both reduced rates. The yield component most sensitive to both nitrogen and interference from weeds was seed number per ear. Practical implications of this study are that reductions in nitrogen use may create the need for more intensive weed management.
Essentially all of our knowledge of the acceleration history of the Universe -including the acceleration itself -is predicated upon the validity of general relativity. Without recourse to this assumption, we use SNeIa to analyze the expansion history and find (i) very strong (5σ) evidence for a period of acceleration, (ii) strong evidence that the acceleration has not been constant, (iii) evidence for an earlier period of deceleration and (iv) only weak evidence that the Universe has not been decelerating since z ∼ 0.3.
For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data. r
We present the analysis of between 50 and 100 h of coincident interferometric strain data used to search for and establish an upper limit on a stochastic background of gravitational radiation. These data come from the first LIGO science run, during which all three LIGO interferometers were operated over a 2-week period spanning August and September of 2002. The method of cross correlating the outputs of two interferometers is used for analysis. We describe in detail practical signal processing issues that arise when working with real data, and we establish an observational upper limit on a f Ϫ3 power spectrum of gravitational waves. Our 90% confidence limit is ⍀ 0 h 100 2 р23Ϯ4.6 in the frequency band 40-314 Hz, where h 100 is the Hubble constant in units of 100 km/sec/Mpc and ⍀ 0 is the gravitational wave energy density per logarithmic frequency interval in units of the closure density. This limit is approximately 10 4 times better than the previous, broadband direct limit using interferometric detectors, and nearly 3 times better than the best narrow-band bar detector limit. As LIGO and other worldwide detectors improve in sensitivity and attain their design goals, the analysis procedures described here should lead to stochastic background sensitivity levels of astrophysical interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.