Coronary computed tomography angiography (CTA) has emerged as a noninvasive method for direct visualization of coronary artery disease, with previous studies demonstrating high diagnostic performance of CTA compared with invasive coronary angiography. However, CTA assessment of coronary stenoses tends toward overestimation, and even among CTA-identified severe stenosis confirmed at the time of invasive coronary angiography, only a minority are found to be ischemia causing. Recent advances in computational fluid dynamics and image-based modeling now permit determination of rest and hyperemic coronary flow and pressure from CTA scans, without the need for additional imaging, modification of acquisition protocols, or administration of medications. These techniques have been used to noninvasively compute fractional flow reserve (FFR), which is the ratio of maximal coronary blood flow through a stenotic artery to the blood flow in the hypothetical case that the artery was normal, using CTA images. In the recently reported prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study and the DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography) trial, FFR derived from CTA was demonstrated as superior to measures of CTA stenosis severity for determination of lesion-specific ischemia. Given the significant interest in this novel method for determining the physiological significance of coronary artery disease, we herein present a review on the scientific principles that underlie this technology.
Coronary flow is different from the flow in other parts of the arterial system because it is influenced by the contraction and relaxation of the heart. To model coronary flow realistically, the compressive force of the heart acting on the coronary vessels needs to be included. In this study, we developed a method that predicts coronary flow and pressure of three-dimensional epicardial coronary arteries by considering models of the heart and arterial system and the interactions between the two models. For each coronary outlet, a lumped parameter coronary vascular bed model was assigned to represent the impedance of the downstream coronary vascular networks absent in the computational domain. The intramyocardial pressure was represented with either the left or right ventricular pressure depending on the location of the coronary arteries. The left and right ventricular pressure were solved from the lumped parameter heart models coupled to a closed loop system comprising a three-dimensional model of the aorta, three-element Windkessel models of the rest of the systemic circulation and the pulmonary circulation, and lumped parameter models for the left and right sides of the heart. The computed coronary flow and pressure and the aortic flow and pressure waveforms were realistic as compared to literature data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.