Polystyrene-clay nanocomposites have been prepared using a bulk polymerization technique. Three new "onium" salts have been used to prepare the nanocomposites, two are functionalized ammonium salts while the third is a phosphonium salt. By TGA/FTIR, both ammonium and phosphonium treatments have been shown to degrade by a Hofmann elimination mechanism at elevated temperatures. TGA/FTIR showed that the phosphonium treatment is the most thermally stable treatment when compared to the two ammonium salts. The nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, strength and elongation at break, as a measure of the mechanical properties, thermogravimetric analysis, and cone calorimetry. The onset temperature of the degradation is increased by about 50 °C and the peak heat release rate is reduced by 27-58%, depending upon the amount of clay that is present. The mass loss rates are also significantly reduced in the presence of the clay.
Polystyrene-clay and polystyrene-graphite nanocomposites have been prepared and used to explore the process by which the presence of clay or graphite in a nanocomposite enhances the thermal stability of polymers. This study has been designed to determine if the presence of paramagnetic iron in the matrix can result in radical trapping and thus enhance thermal stability. Nanocomposites were prepared by bulk polymerization using both iron-containing and iron-depleted clays and graphites, and they were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and cone calorimetry. The presence of structural iron, rather than that present as an impurity, significantly increases the onset temperature of thermal degradation in polymer-clay nanocomposites. Intercalated nanocomposites show an iron effect, but this is less important for exfoliated systems. Polymer-graphite nanocomposites show no difference between iron-free and iron-containing nanocomposites, presumably because the iron is not nanodispersed in the graphite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.