Polymer/graphene nanocomposites have generated intensive interest due to their unique properties. Dispersion and interface interactions between graphene and the polymer matrix are two key factors to obtain property enhancements. According to the open literature, in poly(vinyl alcohol) (PVA) nanocomposites, graphene usually obtains more significant property enhancements than graphite oxide (GO), although GO can much more easily form a good dispersion and strong interaction in the PVA matrix because of its oxygenated functionalities, and the reason has not been well documented yet. In this work, graphene and GO were successfully incorporated into PVA; the properties and the mechanism for the property enhancements were investigated. GO formed better dispersion and exfoliation while graphene caused more property enhancements including mechanical properties, electrical conductivity and thermal stability. The mechanical strength of the graphene/GO nano-layers is attributed to be the fundamental cause for the enhancements in crystallinity and mechanical properties; the hydrogen bond among the PVA molecules is the key factor to influence the glass transition temperatures; the hydrogen bond between the graphene/GO nano-layers and PVA matrix is the decisive factor for the exfoliation and dispersion of graphene/GO; the conducting network is the explanation for the increased electrical conductivity; the physical barrier effect of graphene nano-sheets is the main cause for improved thermal stability. This work investigates the mechanisms for property enhancements, clarifies the roles of the hydrogen bond and the mechanical strength of the graphene/GO nano-layers, and explains why graphene usually achieves more property enhancements than GO.
In order to obtain homogeneous dispersion and strong filler-matrix interface in epoxy resin, graphene oxide was functionalized via surface modification by hexachlorocyclotriphosphazene and glycidol and then incorporated into epoxy resin to obtain nanocomposites via in situ thermal polymerization. The morphology of nanocomposites was characterized by scanning electron microscopy and transmission electron microscopy, implying good dispersion of graphene nano-sheets. The incorporation of functionalized graphene oxide effectively enhanced various property performances of epoxy nanocomposites. The storage modulus of the epoxy nanocomposites was significantly increased by 113% (2% addition) and the hardness was improved by 38% (4% addition). Electrical conductivity was improved by 6.5 orders of magnitude. Enhanced thermal stability was also achieved. This work demonstrates a cost-effective approach to construct a flexible interphase structure, strong interfacial interaction and good dispersion of functionalized graphene in epoxy nanocomposites through a local epoxy-rich environment around graphene oxide sheets, which reinforces the polymer properties and indicates further application in research and industrial areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.