We report that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state. The luminescence emission of the carbon dots is stable against photobleaching, and there is no blinking effect. These strongly emissive carbon dots may find applications similar to or beyond those of their widely pursued silicon counterparts.
Nitrogen doping has been an effective way to tailor the properties of graphene and render its potential use for various applications. Three common bonding configurations are normally obtained when doping nitrogen into the graphene: pyridinic N, pyrrolic N, and graphitic N. This paper reviews nitrogen-doped graphene, including various synthesis methods to introduce N doping and various characterization techniques for the examination of various N bonding configurations. Potential applications of N-graphene are also reviewed on the basis of experimental and theoretical studies.
Background Genome-wide association studies (GWASs) in Parkinson's disease (PD) have increased the scope of biological knowledge about the disease over the past decade. We sought to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into disease etiology. Methods We performed the largest meta-GWAS of PD to date, involving the analysis of 7.8M SNPs in 37.7K cases, 18.6K UK Biobank proxy-cases (having a first degree relative with PD), and 1.4M controls. We carried out a meta-analysis of this GWAS data to nominate novel loci. We then evaluated heritable risk estimates and predictive models using this data. We also utilized large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type and biological pathway enrichments for the identified risk factors. Additionally we examined shared genetic risk between PD and other phenotypes of interest via genetic correlations followed by Mendelian randomization. Findings We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of the heritable risk of PD depending on prevalence. Integrating methylation and expression data within a Mendelian randomization framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested PD loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes, smoking status, and educational attainment. Mendelian randomization between cognitive performance and PD risk showed a robust association. Interpretation These data provide the most comprehensive understanding of the genetic architecture of PD to date by revealing many additional PD risk loci, providing a biological context for these risk factors, and demonstrating that a considerable genetic component of this disease remains unidentified. Funding See supplemental materials (Text S2). lead to earlier detection and refined diagnostics, which may help improve clinical trials (4). The generation of copious amounts of public summary statistics created by this effort relating to both the GWAS and subsequent analyses of gene expression and methylation patterns may be of use to investigators planning follow-up functional studies in stem cells or other cellular screens, allowing them to prioritize targets more efficiently using our data as additional evidence. We hope our findings may have some downstream clinical impact in the future such as improved patient stratification for clinical trials and genetically informed drug targets.
Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 in the early phase of infection. A higher titer of Ab was independently associated with a worse clinical classification. Abstract BackgroundThe novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patient remains largely unknown, and the clinical values of antibody testing have not been fully demonstrated. MethodsA total of 173 patients with SARS-CoV-2 infection were enrolled. Their serial plasma samples (n=535) collected during the hospitalization were tested for total antibodies (Ab), IgM and IgG against SARS-CoV-2. The dynamics of antibodies with the disease progress was analyzed. ResultsAmong 173 patients, the seroconversion rate for Ab, IgM and IgG was 93.1%, 82.7% and 64.7%, respectively. The reason for the negative antibody findings in 12 patients might due to the lack of blood samples at the later stage of illness. The median seroconversion time for Ab, IgM and then IgG were day-11, day-12 and day-14, separately. The presence of antibodies was <40% among patients within 1-week since onset, and rapidly increased to 100.0% (Ab), 94.3% (IgM) and 79.8% (IgG) since day-15 after onset. In contrast, RNA detectability decreased from 66.7% (58/87) in samples collected before day-7 to 45.5% (25/55) during day 15-39. Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 (p<0.001), even in early phase of 1-week since onset (p=0.007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (p=0.006). ConclusionsThe antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.