Layer-by-layer (LbL) assembly is an attractive method for protein immobilization at interfaces, a much wanted step for biotechnologies and biomedicine. Integrating proteins in LbL thin films is however very challenging due to their low conformational entropy, heterogeneous spatial distribution of charges, and polyampholyte nature. Protein-polyelectrolyte complexes (PPCs) are promising building blocks for LbL construction owing to their standardized charge and polyelectrolyte (PE) corona. In this work, lysozyme was complexed with poly(styrenesulfonate) (PSS) at different ionic strengths and pH values. The PPCs size and electrical properties were investigated, and the forces driving complexation were elucidated, in the light of computations of polyelectrolyte conformation, with a view to further unravel LbL construction mechanisms. Quartz crystal microbalance and atomic force microscopy were used to monitor the integration of PPCs compared to the one of bare protein molecules in LbL assemblies, and colorimetric assays were performed to determine the protein amount in the thin films. Layers built with PPCs show higher protein contents and hydration levels. Very importantly, the results also show that LbL construction with PPCs mainly relies on standard PE-PE interactions, independent of the charge state of the protein, in contrast to classical bare protein assembly with PEs. This considerably simplifies the incorporation of proteins in multilayers, which will be beneficial for biosensing, heterogeneous biocatalysis, biotechnologies, and medical applications that require active proteins at interfaces.
Osmosis drives transcapillary ultrafiltration and water removal in patients treated with peritoneal dialysis. Crystalloid osmosis, typically induced by glucose, relies on dialysate tonicity and occurs through endothelial aquaporin-1 water channels and interendothelial clefts. In contrast, the mechanisms mediating water flow driven by colloidal agents, such as icodextrin, and combinations of osmotic agents have not been evaluated. We used experimental models of peritoneal dialysis in mouse and biophysical studies combined with mathematical modeling to evaluate the mechanisms of colloid versus crystalloid osmosis across the peritoneal membrane and to investigate the pathways mediating water flow generated by the glucose polymer icodextrin. modeling and studies showed that deletion of aquaporin-1 did not influence osmotic water transport induced by icodextrin but did affect that induced by crystalloid agents. Water flow induced by icodextrin was dependent upon the presence of large, colloidal fractions, with a reflection coefficient close to unity, a low diffusion capacity, and a minimal effect on dialysate osmolality. Combining crystalloid and colloid osmotic agents in the same dialysis solution strikingly enhanced water and sodium transport across the peritoneal membrane, improving ultrafiltration efficiency over that obtained with either type of agent alone. These data cast light on the molecular mechanisms involved in colloid versus crystalloid osmosis and characterize novel osmotic agents. Dialysis solutions combining crystalloid and colloid particles may help restore fluid balance in patients treated with peritoneal dialysis.
A series of tunable interpenetrating polymer network (IPN) hydrogels are designed by the orthogonal incorporation of two distinct types of reversible bonds, i.e., Schiff base bonds and metal−ligand coordination bonds. Two copolymers based on poly(N,N-dimethyl acrylamide) (PDMA) are synthesized and used as building blocks for the IPN hydrogels. The first one bears ketone pendant groups and is cross-linked by dihydrazide or bishydroxylamine compounds to form, respectively, acylhydrazone-or oxime-based dynamic covalent bond (DCB) networks. The second one bears terpyridine side groups and is cross-linked by the addition of two different transition-metal cations to obtain supramolecular networks based on metal−terpyridine bis-complexes. Several IPN hydrogels are prepared by combining these different types of reversible bonds to investigate how the two subnetworks influence each other. To this end, the influence of the cross-linker nature and of the hydrogel preparation protocol on the rheological properties of these IPNs are also studied in detail. In particular, we show that the obtained IPN hydrogels exhibit a higher modulus compared to the simple addition of the moduli of the single networks, which we attribute to the entanglements between the two networks. We then study how these IPN hydrogels can disentangle and partially relax if one of the reversible subnetworks is composed of cross-links with a shorter lifetime. Finally, pH is used as a stimulus to affect the dynamics of only one of the subnetworks, and the impact of this change on the properties of the IPNs is investigated.
A standard method of protein immobilization is proposed, based on the use of protein-polyelectrolyte complexes (PPCs) as building blocks for layer-by-layer assembly. Thicker multilayers, with a higher polyelectrolyte fraction, are obtained with PPCs compared to single protein molecules. Biological activity is not only maintained, but specific activity is also higher, as demonstrated for lysozyme-poly(styrene sulfonate) complexes. This is attributed to the more hydrated state of the assemblies. This new method of protein immobilization opens up perspectives for biotechnology and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.