Vegetation heights derived from drone laser scanning (DLS), and structure from motion (SfM) photogrammetry at the Virginia Tech StREAM Lab were utilized to determine hydraulic roughness (Manning’s roughness coefficients). We determined hydraulic roughness at three spatial scales: reach, patch, and pixel. For the reach scale, one roughness value was set for the channel, and one value for the entire floodplain. For the patch scale, vegetation heights were used to classify the floodplain into grass, scrub, and small and large trees, with a single roughness value for each. The roughness values for the reach and patch methods were calibrated using a two-dimensional (2D) hydrodynamic model (HEC-RAS) and data from in situ velocity sensors. For the pixel method, we applied empirical equations that directly estimated roughness from vegetation height for each pixel of the raster (no calibration necessary). Model simulations incorporating these roughness datasets in 2D HEC-RAS were validated against water surface elevations (WSE) from seventeen groundwater wells for seven high-flow events during the Fall of 2018 and 2019, and compared to marked flood extents. The reach method tended to overestimate while the pixel method tended to underestimate the flood extent. There were no visual differences between DLS and SfM within the pixel and patch methods when comparing flood extents. All model simulations were not significantly different with respect to the well WSEs (p > 0.05). The pixel methods had the lowest WSE RMSEs (SfM: 0.136 m, DLS: 0.124 m). The other methods had RMSE values 0.01–0.02 m larger than the DLS pixel method. Models with DLS data also had lower WSE RMSEs by 0.01 m when compared to models utilizing SfM. This difference might not justify the increased cost of a DLS setup over SfM (~150,000 vs. ~2000 USD for this study), though our use of the DLS DEM to determine SfM vegetation heights might explain this minimal difference. We expect a poorer performance of the SfM-derived vegetation heights/roughness values if we were using a SfM DEM, although further work is needed. These results will help improve hydrodynamic modeling efforts, which are becoming increasingly important for management and planning in response to climate change, specifically in regions were high flow events are increasing.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.