Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup
The molecular mechanisms controlling the process of myelination by Schwann cells remain elusive, despite recent progress in the identification and characterization of genes encoding myelin components (reviewed in ref. 1). We have created a null allele in the mouse Krox-20 gene, which encodes a zinc-finger transcription factor, by in-frame insertion of the Escherichia coli lacZ gene, and have shown that hindbrain segmentation is affected in Krox-20-/- embryos. We demonstrate here that Krox-20 is also activated in Schwann cells before the onset of myelination and that its disruption blocks Schwann cells at an early stage in their differentiation, thus preventing myelination in the peripheral nervous system. In Krox-20-/- mice, Schwann cells wrap their cytoplasmic processes only one and a half turns around the axon, and although they express the early myelin marker, myelin-associated glycoprotein, late myelin gene products are absent, including those for protein zero and myelin basic protein. Therefore Krox-20 is likely to control a set of genes required for completion of myelination in the peripheral nervous system.
Listeria monocytogenes is responsible for severe food-borne infections, but the mechanisms by which bacteria cross the intestinal barrier are unknown. Listeria monocytogenes expresses a surface protein, internalin, that interacts with a host receptor, E-cadherin, to promote entry into human epithelial cells. Murine E-cadherin, in contrast to guinea pig E-cadherin, does not interact with internalin, excluding the mouse as a model for addressing internalin function in vivo. In guinea pigs and transgenic mice expressing human E-cadherin, internalin was found to mediate invasion of enterocytes and crossing of the intestinal barrier. These results illustrate how relevant animal models for human infections can be generated.
HNF1 is a transcriptional activator of many hepatic genes including albumin, alpha1-antitrypsin, and alpha- and beta-fibrinogen. It is related to the homeobox gene family and is predominantly expressed in liver and kidney. Mice lacking HNF1 fail to thrive and die around weaning after a progressive wasting syndrome with a marked liver enlargement. The transcription rate of genes like albumin and alpha1-antitrypsin is reduced, while the gene coding for phenylalanine hydroxylase is totally silent, giving rise to phenylketonuria. Mutant mice also suffer from severe Fanconi syndrome caused by renal proximal tubular dysfunction. The resulting massive urinary glucose loss leads to energy and water wasting. HNF1-deficient mice may provide a model for human renal Fanconi syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.