Galvanometer scanners (GSs) driving selective laser sintering (SLS)/selective laser melting (SLM) printers for additive manufacturing (AM) have mechanical limits. They provide inconsistent energy density across the print surface because of changes in optical path length, surface beam speed, and angle of incidence. The resulting thermal gradients may be particularly problematic for metal, whose high heat conductivity makes temperature prediction during printing critical. In this paper, we mathematically analyze and compare GSs with a new lens-free optical scanner. The results show that the latter can facilitate metal printing by providing consistent energy deposition across the print surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.