Flux tube integrated Rayleigh‐Taylor instability growth rates computed by using the results of ionosphere data assimilation are used for the first time to investigate global plasma bubble occurrence. The study is carried out by assimilating total electron content measurements using ground‐based Global Positioning System (GPS) receivers into thermosphere ionosphere electrodynamic general circulation model, and the growth rates are calculated by using standalone model run without assimilation (control run) as well as using prior (or forecast) state output of the assimilation run. The growth rates are compared with the rate of change of total electron content index (ROTI), estimated from global network of GPS receivers, as well as all‐sky airglow observations carried out over Taiwan on the nights of 16 and 17 March 2015. In contrast to the growth rates using the control run, results using data assimilation show remarkable agreement with the ROTI. Further, the all‐sky images reveal intense plasma bubbles over Taiwan on the night of 16 March, when the corresponding assimilated growth rate is also pronounced. Similarly, the absence of plasma bubbles in the all‐sky images on the night of 17 March (St. Patrick's Day storm) is supported by smaller growth rates predicted by the assimilation model. Significant improvements in the calculated growth rates could be achieved because of the accurate updating of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.
All‐sky camera observations carried out over Taiwan showed intense equatorial plasma bubbles (EPBs) in 630.0 nm airglow images on consecutive nights of 13–16 March 2015 but were absent in the following night of 17 March when St. Patrick's Day magnetic storm occurred. Rate of total electron content (TEC) index by using Global Positioning System (GPS) network data also confirmed the absence of irregularities on the night 17 March. The results, however, revealed strong irregularities over Indian sector on the same night. Flux tube integrated Rayleigh‐Taylor instability growth rates computed using the prior (forecast) state of Thermosphere‐Ionosphere Electrodynamics General Circulation Model output after assimilating the GPS‐TEC measurements also agree with the observations, showing smaller values over Taiwan and larger values over India on the night of 17 March. The ionospheric response to the storm over Taiwan that resulted in the apparent inhibition of EPB is investigated in this study by using the data assimilation output. Results indicate that on the night of the magnetic storm, prereversal enhancement of zonal electric field over Taiwan was weaker when compared to that over India. Further analysis suggests that the absence of enhancement in the zonal electric field could be due to westward penetration electric field in response to rapid northward turning of interplanetary magnetic field that occurred during the dusk period over Taiwan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.