Comparison of plate convergence with the timing and magnitude of upper crustal shortening in collisional orogens indicates both shortening deficits (200–1700 km) and significant (10–40%) plate deceleration during collision, the cause(s) for which remains debated. The Greater Caucasus Mountains, which result from postcollisional Cenozoic closure of a relict Mesozoic back‐arc basin on the northern margin of the Arabia‐Eurasia collision zone, help reconcile these debates. Here we use U‐Pb detrital zircon provenance data and the regional geology of the Caucasus to investigate the width of the now‐consumed Mesozoic back‐arc basin and its closure history. The provenance data record distinct southern and northern provenance domains that persisted until at least the Miocene. Maximum basin width was likely ~350–400 km. We propose that closure of the back‐arc basin initiated at ~35 Ma, coincident with initial (soft) Arabia‐Eurasia collision along the Bitlis‐Zagros suture, eventually leading to ~5 Ma (hard) collision between the Lesser Caucasus arc and the Scythian platform to form the Greater Caucasus Mountains. Final basin closure triggered deceleration of plate convergence and tectonic reorganization throughout the collision. Postcollisional subduction of such small (102–103 km wide) relict ocean basins can account for both shortening deficits and delays in plate deceleration by accommodating convergence via subduction/underthrusting, although such shortening is easily missed if it occurs along structures hidden within flysch/slate belts. Relict basin closure is likely typical in continental collisions in which the colliding margins are either irregularly shaped or rimmed by extensive back‐arc basins and fringing arcs, such as those in the modern South Pacific.
Although the Greater Caucasus Mountains have played a central role in absorbing late Cenozoic convergence between the Arabian and Eurasian plates, the orogenic architecture and the ways in which it accommodates modern shortening remain debated. Here, we addressed this problem using geologic mapping along two transects across the southern half of the western Greater Caucasus to reveal a suite of regionally coherent stratigraphic packages that are juxtaposed across a series of thrust faults, which we call the North Georgia fault system. From south to north within this system, stratigraphically repeated ~5–10-km-thick thrust sheets show systematically increasing bedding dip angles (<30° in the south to subvertical in the core of the range). Likewise, exhumation depth increases toward the core of the range, based on low-temperature thermochronologic data and metamorphic grade of exposed rocks. In contrast, active shortening in the modern system is accommodated, at least in part, by thrust faults along the southern margin of the orogen. Facilitated by the North Georgia fault system, the western Greater Caucasus Mountains broadly behave as an in-sequence, southward-propagating imbricate thrust fan, with older faults within the range progressively abandoned and new structures forming to accommodate shortening as the thrust propagates southward. We suggest that the single-fault-centric “Main Caucasus thrust” paradigm is no longer appropriate, as it is a system of faults, the North Georgia fault system, that dominates the architecture of the western Greater Caucasus Mountains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.