Experiments were done to determine the form of the input-output relation (i.e. stimulus intensity vs response amplitude) of the corticospinal pathway of the first dorsal interosseous and the tibialis anterior, respectively. Our purpose was to determine from these quantitative relations which input-output parameters would be useful measures in studies dealing with motor cortical task dependence. The motor cortex was excited by focal transcranial magnetic stimuli and the evoked motor response were recorded with surface electromyographic electrodes. In some experiments the discharge probability of single motor units in response to magnetic stimuli of increasing intensity was determined from intramuscular recordings. For both muscles the form of the input-output relation was sigmoidal. The steepness of the relation increased, up to 4-7 times the value at rest, with increasing tonic background activity. The threshold decreased, but only slightly, with increasing tonic background activity. The minimum value of the threshold was reached at activation levels of about 10-20% of the maximum tonic effort, whereas the steepness of the relation reached its maximum at higher activation levels, typically about 30-40% of the maximum tonic effort. These observations imply that these two input-output parameters of the corticospinal pathway - one reflecting the bias level (threshold) and the other the gain (slope) - are determined by different neural mechanisms. The plateau level of the sigmoidal input-output relation was not influenced by the background activation level, except that in some subjects (4/9) it could not be reached when no background motor activity was present. This was probably due, for the most part, to limitation of the maximum stimulator output. Additionally, this finding may reflect a change in the intrinsic excitability of the motor cortex in going from rest to activity, or that convergent inputs from different descending and afferent systems are required for maximal activation of motoneuron pools. Thus, the threshold, steepness and plateau level characterize the input-output parameters of the human corticospinal pathway for a given level of motor activity. In contrast to the nonlinear input-output relation of the corticospinal pathway as whole, which includes the motoneuron pool and any spinal interneuronal relays, the discharge probability of all single motor units was a linearly increasing function of the stimulus strength (r> or =0.9, P<0.01). Thus, the sigmoidal input-output relation of the corticospinal pathway, as a whole, is not due to the input-output properties of single motoneurons. The possible neural mechanisms which underlie the shape and parameters of the input-output relation as well as the methodological implications of the results are considered.
Experiments were done to determine the amplitude of the monosynaptically mediated H-reflex of the soleus muscle at various phases of the step cycle, using a computer-based analysis procedure. In all subjects tested the amplitude of the H-reflex was strongly modulated in amplitude during the walking cycle and was highest during the stance phase. In many subjects the peak reflex amplitude occurred at about the same time as the peak soleus electromyographic (EMG) activity, but in others it occurred earlier. The form of the reflex variation (i.e., envelope of H-reflex amplitude versus phase in cycle) during the step cycle could also be quite different from that of the EMG produced during stepping. At an equal stimulus strength and EMG level, the H-reflex was always much larger, up to 3.5 X, during steadily maintained contractions while standing than during walking. The large reflexes when subjects were standing are consistent with the control of position required to maintain a stable posture in this task. Similarly, the reflexes during walking are greatest during the stance phase, when they will assist in maintaining the upright position of the body against gravity. The reflexes are smallest during the swing phase when they would oppose ankle flexion. However, since the reflex amplitude is task-dependent (i.e., greater during standing than during walking at the same EMG and stimulus levels) and is not always closely related to the EMG produced during a given task such as walking, the strong modulation of H-reflex during walking is not simply a passive consequence of the alpha-motoneuron excitation level.(ABSTRACT TRUNCATED AT 250 WORDS)
SUMMARY1. The Hoffman reflex, or H reflex, was strongly modulated in the human soleus muscle during both walking (4 km/h) and running (8 km/h). It was relatively low at the time of heel contact, increased progressively during the stance phase, and reached its maximum amplitude late in the stance phase. During ankle dorsiflexion the H reflex was absent.2. During running the peak e.m.g. level of the soleus was on average 2-4 times higher than during walking but the maximum amplitude of the H reflex was never larger than during walking. In fact, the H reflex was on average significantly (P < 005 for one-tailed t test) smaller during running than during walking. Furthermore, the slope of the least-squares line fitted to the relation between the H reflex amplitude and the background e.m.g. was always steeper for the walking data than for the running data.3. The difference in the H reflex in the two tasks is evidence that the size of the H reflex is not simply a passive consequence of the a-motoneurone excitation level, as indicated by the e.m.g., but is also influenced by other central neural mechanisms. We suggest that presynaptic inhibition is the most likely mechanism accounting for the change in the slope.4. The modulation of the reflexes during walking and running can be interpreted in terms of the idea of automatic gain compensation. The decreased gain during running may be appropriate to reduce saturation of motor output and potential instability of the stretch reflex feed-back loop.
Experiments were done to determine the extent to which the corticospinal tract is linked with the segmental motor circuits controlling ankle flexors and extensors during human walking compared with voluntary motor tasks requiring attention to the level of motor activity. The motor cortex was activated transcranially using a focal magnetic stimulation coil. For each subject, the entire input-output (I-O) curve [i.e., the integral of the motor evoked-potential (MEP) versus stimulus strength] was measured during a prescribed tonic voluntary contraction of either the tibialis anterior (TA) or the soleus. Similarly, I-O curves were measured in the early part of the swing phase, or in the early part of the stance phase of walking. The I-O data points were fitted by the Boltzmann sigmoidal function, which accounted for >/=80% of total data variance. There was no statistically significant difference between the I-O curves of the TA measured during voluntary ankle dorsiflexion or during the swing phase of walking, at matched levels of background electromyographic (EMG) activity. Additionally, there was no significant difference in the relation between the coefficient of variation and the amplitude of the MEPs measured in each task, respectively. In comparison, during the stance phase of walking the soleus MEPs were reduced on average by 26% compared with their size during voluntary ankle plantarflexion. Furthermore, during stance the MEPs in the inactive TA were enhanced relative to their size during voluntary ankle plantarflexion and in four of six subjects the TA MEPs were larger than those of the soleus. Finally, stimulation of the motor cortex at various phases of the step cycle did not reset the cycle. The time of the next step occurred at the expected moment, as determined from the phase-resetting curve. One interpretation of this result is that the motor cortex may not be part of the central neural system involved in timing the motor bursts during the step cycle. We suggest that during walking the corticospinal tract is more closely linked with the segmental motor circuits controlling the flexor, TA, than it is with those controlling the extensor, soleus. However, during voluntary tasks requiring attention to the level of motor activity, it is equally linked with the segmental motor circuits of ankle flexors or extensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.