Abstract. Diagnostic laboratories frequently select a subjective cutoff value for real-time amplification assays, above which a threshold cycle (Ct) value is deemed false. Commonly, higher Ct values are interpreted as amplification or fluorescence artifacts, or cross contaminations. Although the implementation of Ct cutoff might be reasonable, its justification and selection should be based on evidence. The current article reviewed evidence-based strategies to select Ct cutoffs grouped in analytical and epidemiologic approaches. Analytical strategies use criteria gathered during the assay development and include fluorescence threshold, reaction endcycle, limit of detection, and artifact investigation. Variability in amplification efficacy across test runs may induce some instability in an intended Ct cutoff and requires some standardization or normalization procedures. Epidemiologic strategies use criteria based on either the probability or the cost of a false test result associated with a specified cutoff. Cutoffs, depending on the intended purpose of the test, can be selected graphically to minimize the probability of either false-positive or false-negative results by using two-graph receiver operating characteristics curves. The assay's diagnostic sensitivity and specificity may vary with the tested population, thus, the estimated two-graph receiver operating characteristics curve is population dependent and should be established for the targeted population. Although the selection of a cutoff based on misclassification cost depends on infection prevalence, the selection based on predictive values does not. To optimize the test average diagnostic performance, the Ct cutoff should be selected when diagnostic odds ratio is maximal. Epidemiologic approaches were illustrated by selecting Ct cutoffs for a real-time assay for Infectious salmon anemia virus.
In 1975, Fagan published a nomogram to help practitioners determine, without the use of a calculator or computer, the probability of a patient truly having a condition of interest given a particular test result. Nomograms are very useful for bedside interpretations of test results, as no test is perfect. However, the practicality of Fagan's nomogram is limited by its use of the likelihood ratio (LR), a parameter not commonly reported in the evaluation studies of diagnostic tests. The LR reflects the direction and strength of evidence provided by a test result and can be computed from the conventional diagnostic sensitivity (DSe) and specificity (DSp) of the test. This initial computation is absent in Fagan's nomogram, making it impractical for routine use. We have seamlessly integrated the initial step to compute the LR and the resulting two-step nomogram allows the user to quickly interpret the outcome of a test. With the addition of the DSe and DSp, the nomogram, for the purposes of interpreting a dichotomous test result, is now complete. This tool is more accessible and flexible than the original, which will facilitate its use in routine evidence-based practice. The nomogram can be downloaded at: www.adelaide.edu.au/vetsci/research/pub_pop/2step-nomogram/.
Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studiesparatuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-forpurpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.