Mapping longitudinal relaxation times in 3D is a promising quantitative and non-invasive imaging tool to assess cardiac remodeling. Few methods are proposed in the literature allowing us to perform 3D T1 mapping. These methods often require long scan times and use a low number of 3D images to calculate T1 . In this project, a fast 3D T1 mapping method using a stack-of-spirals sampling scheme and regular RF pulse excitation at 7 T is presented. This sequence, combined with a newly developed fitting procedure, allowed us to quantify T1 of the whole mouse heart with a high spatial resolution of 208 × 208 × 315 µm(3) in 10-12 min acquisition time. The sensitivity of this method for measuring T1 variations was demonstrated on mouse hearts after several injections of manganese chloride (doses from 25 to 150 µmol kg(-1) ). T1 values were measured in vivo in both pre- and post-contrast experiments. This protocol was also validated on ischemic mice to demonstrate its efficiency to visualize tissue damage induced by a myocardial infarction. This study showed that combining spiral gradient shape and steady RF excitation enabled fast and robust 3D T1 mapping of the entire heart with a high spatial resolution.
BACKGROUND AND PURPOSE: MR imaging quantitative T2* mapping, which provides information about thrombus composition and specifically the red blood cell content, may be obtained in the setting of acute ischemic stroke before treatment. This could be useful to adapt the endovascular strategy. We aimed to analyze the red blood cell content of in vitro thrombi in relation to the thrombus-T2* relaxation time. MATERIALS AND METHODS:Thirty-five thrombus analogs of different compositions were scanned with an MR imaging quantitative T2* mapping sequence. Two radiologists, blinded to thrombus composition, measured the thrombus-T2* relaxation time twice at an interval of 2 weeks. Quantitative histologic evaluations of red blood cell content were performed. Inter-and intraobserver reproducibility of the thrombus-T2* relaxation time was assessed by calculating intraclass correlation coefficients. Finally, a Spearman product moment correlation between the thrombus-T2* relaxation time and red blood cell content was performed. RESULTS:The median thrombus-T2* relaxation time was 78.5 ms (range, 16 -268 ms; interquartile range, 60.5 ms). The median red blood cell content was 55% (range, 0%-100%; interquartile range, 75%). Inter-and intraobserver reproducibility of the thrombus-T2* relaxation time was excellent (Ͼ0.9). The Spearman rank correlation test found a significant inverse correlation between thrombus-T2* relaxation time and red blood cell content ( ϭ Ϫ0.834, P Ͻ .001).CONCLUSIONS: MR imaging quantitative T2* mapping can reliably identify the thrombus red blood cell content in vitro. This fast, easy-to-use sequence could be implemented in routine practice to predict stroke etiology and adapt devices or techniques for endovascular treatment of acute ischemic stroke. ABBREVIATIONS: RBC ϭ red blood cell; SVS ϭ susceptibility vessel sign; TT2*RT ϭ thrombus-T2* relaxation time
Although MEMRI (Manganese Enhanced MRI) informations were obtained on primary tumors in small animals, MEMRI data on metastases are lacking. Thus, our goal was to determine if 3D Look-Locker T1 mapping was an efficient method to evaluate Mn ions transport in brain metastases in vivo. The high spatial resolution in 3D (156 × 156 × 218 μm) of the sequence enabled to detect metastases of 0.3 mm3. In parallel, the T1 quantitation enabled to distinguish three populations of MDA-MB-231 derived brain metastases after MnCl2 intravenous injection: one with a healthy blood-tumor barrier that did not internalize Mn2+ ions, and two others, which T1 shortened drastically by 54.2% or 24%. Subsequent scans of the mice, enabled by the fast acquisition (23 min), demonstrated that these T1 reached back their pre-injection values in 24 h. Contrarily to metastases, the T1 of U87-MG glioma remained 26.2% shorter for one week. In vitro results supported the involvement of the Transient Receptor Potential channels and the Calcium-Sensing Receptor in the uptake and efflux of Mn2+ ions, respectively. This study highlights the ability of the 3D Look-Locker T1 mapping sequence to study heterogeneities (i) amongst brain metastases and (ii) between metastases and glioma regarding Mn transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.