Summary
How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage and stromal development from a population of highly pure, post-natal skeletal stem cells (mouse Skeletal Stem Cell, mSSC) to its downstream progenitors of bone, cartilage and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in non-skeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation towards bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.
Summary
Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation towards cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis.
The heterotrimeric synaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consisting of the synaptic vesicle-associated membrane protein 2 (VAMP2) and presynaptic plasma membrane proteins SNAP-25 (synaptosome-associated protein of 25,000 Mr) and syntaxin 1A, is a critical component of the exocytotic machinery. We have used spin labeling electron paramagnetic resonance spectroscopy to investigate the structural organization of this complex, particularly the two predicted helical domains contributed by SNAP-25. Our results indicate that the N- and C-terminal domains of SNAP-25 are parallel to each other and to the C-terminal domain of syntaxin 1A. Based on these findings, we propose a parallel four-stranded coiled coil model for the structure of the synaptic SNARE complex.
The vasculature of tumours is highly abnormal and dysfunctional. Consequently, immune effector cells have an impaired ability to penetrate into solid tumours and often exhibit compromised functions. Normalization of the tumour vasculature can enhance tissue perfusion and improve immune effector cell infiltration, leading to immunotherapy potentiation. However, recent studies, have demonstrated that stimulation of immune cell functions can also help to normalize tumour vessels. In this Opinion article, we propose that the reciprocal regulation between tumour vascular normalization and immune reprogramming forms a reinforcing loop that reconditions the tumour immune microenvironment to induce durable antitumour immunity. A deeper understanding of these pathways could pave the way for identifying new biomarkers and developing more effective combination treatment strategies for patients with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.