We report the use of solid Lewis acid catalysts for the conversion of tetrose sugars to four-carbon α-hydroxy acid esters (C4-AHA), which are useful as functional polyester building blocks. Sn-β was by far the most active and selective catalyst, yielding up to 80% methyl vinyl glycolate (MVG), methyl-4-methoxy-2-hydroxybutanoate (MMHB), and α-hydroxy-γ-butyrolactone (HBL) combined at 95% conversion. A very high turnover frequency (TOF) of 330 molC4‑AHA molSn h–1 was attained using Sn-β, a more than 6-fold increase compared with homogeneous SnCl4·5H2O. It is shown that, using different Sn-based catalysts with various pore sizes, the product distribution is strongly dependent on the size of the catalyst pores. Catalysts containing mainly mesopores, such as Sn-MCM-41 or Sn-SBA-15, prefer the production of the more bulky MMHB, whereas microporous catalysts such as Sn-β or Sn-MFI favor the production of MVG. This effect can be further enhanced by increasing the reaction temperature. At 363 K, only 20% MVG is attained using Sn-β, but at 433 K, this increases to 50%. Using a kinetic analysis, it was found that, in microporous catalysts, steric hindrance near the Sn active site in the catalyst pores plays a dominant role in favoring the reaction pathway toward MVG. Moreover, the selectivity toward both products is kinetically controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.