We report the results of a double-blind, placebo-controlled trial in nine cystic fibrosis (CF) subjects receiving cationic liposome complexed with a complementary DNA encoding the CF transmembrane conductance regulator (CFTR), and six CF subjects receiving only liposome to the nasal epithelium. No adverse clinical effects were seen and nasal biopsies showed no histological or immuno-histological changes. A partial restoration of the deficit between CF and non-CF subjects of 20% was seen for the response to low Cl- perfusion following CFTR cDNA administration. This was maximal around day three and had reverted to pretreatment values by day seven. In some cases the response to low Cl- was within the range for non-CF subjects. Plasmid DNA and transgene-derived RNA were detected in the majority of treated subjects. Although these data are encouraging, it is likely that transfection efficiency and the duration of expression will need to be increased for therapeutic benefit.
Nonviral vectors consisting of integrin-targeting peptide/DNA (ID) complexes have the potential for widespread application in gene therapy. The transfection efficiency of this vector, however, has been limited by endosomal degradation. We now report that lipofectin (L) incorporated into the ID complexes enhances integrin-mediated transfection, increasing luciferase expression by more than 100-fold. The transfection efficiency of Lipofectin/Integrin-binding peptide/DNA (LID) complexes, assessed by beta-galactosidase reporter gene expression and X-gal staining, was improved from 1% to 10% to over 50% for three different cell lines, and from 0% to approximately 25% in corneal endothelium in vitro. Transfection complexes have been optimized with respect to their transfection efficiency and we have investigated their structure, function, and mode of transfection. Both ID and LID complexes formed particles, unlike the fibrous network formed by lipofectin/DNA complexes (LD). Integrin-mediated transfection by LID complexes was demonstrated by the substantially lower transfection efficiency of LKD complexes in which the integrin-biding peptide was substituted for K16 (K). Furthermore, the transfection efficiency of complexes was shown to be dependent on the amount of integrin-targeting ligand in the complex. Finally, a 34% reduction in integrin-mediated transfection efficiency by LID complexes was achieved with a competing monoclonal antibody. The role of lipofectin in LID complexes appears, therefore, to be that of a co-factor, enhancing the efficiency of integrin-mediated transfection. The mechanism of enhancement is likely to involve a reduction in the extent of endosomal degradation of DNA.
Gene therapy by use of integrating vectors carrying therapeutic transgene sequences offers the potential for a permanent cure of genetic diseases by stable vector insertion into the patients' chromosomes. However, three cases of T cell lymphoproliferative disease have been identified almost 3 years after retrovirus gene therapy for X-linked severe combined immune deficiency. In two of these cases vector insertion into the LMO2 locus was implicated in leukemogenesis, demonstrating that a more profound understanding is required of the genetic and molecular effects imposed on the host by vector integration or transgene expression. In vivo models to test for retro- and lentiviral vector safety prior to clinical application are therefore needed. Here we present a high incidence of lentiviral vector-associated tumorigenesis following in utero and neonatal gene transfer in mice. This system may provide a highly sensitive model to investigate integrating vector safety prior to clinical application.
We have synthesized a linear, bifunctional peptide that comprises an integrin-targeting domain containing an arginine-glycine-aspartic acid tripeptide motif and a DNA-binding moiety consisting of a short stretch of 16 lysine residues. This peptide can form distinctive, condensed complexes with DNA and is capable of mediating its delivery and expression in a variety of mammalian cells in culture. Internalization is mediated by cell surface integrin receptors via a mechanism that is known to be phagocytic. We have analyzed the relationship between DNA and peptide and have investigated the conditions suitable for optimal gene delivery. The formation of condensed peptide DNA complexes leads to resistance to nuclease degradation. The level of reporter gene expression obtained is dependent on the peptide-to-DNA ratio and is enhanced in the presence of the endosomal buffer chloroquine, polyethyleneimine, and deactivated adenovirus during gene delivery. Under optimal conditions the levels of reporter gene expression obtained approach or even exceed those obtained with DNA delivered with the commercial liposome Lipofectamine. The ability to produce an efficient gene delivery system using small, easily modified, and well-defined constructs that have no constraint of particle size demonstrates the advantages of integrin-targeting peptides for gene transfer.
The presence of CpG motifs and their associated sequences in bacterial DNA causes an immunotoxic response following the delivery of these plasmid vectors into mammalian hosts. We describe a biotechnological approach to the elimination of this problem by the creation of a bacterial cre recombinase expression system, tightly controlled by the arabinose regulon. This permits the Cre-mediated and -directed excision of the entire bacterial vector sequences from plasmid constructs to create supercoiled gene expression minicircles for gene therapy. Minicircle yields using standard culture volumes are sufficient for most in vitro and in vivo applications whereas minicircle expression in vitro is significantly increased over standard plasmid transfection. By the simple expedient of removing the bacterial DNA complement, we significantly reduce the size and CpG content of these expression vectors, which should also reduce DNA-induced inflammatory responses in a dose-dependent manner. We further describe the generation of minicircle expression vectors for mammalian mitochondrial gene therapy, for which no other vector systems currently exist. The removal of bacterial vector sequences should permit appropriate transcription and correct transcriptional cleavage from the mitochondrial minicircle constructs in a mitochondrial environment and brings the realization of mitochondrial gene therapy a step closer.There is increasing evidence to suggest that plasmid DNA used for non-viral gene delivery can cause unacceptable inflammatory responses in eukaryotes (1-5). These immunotoxic responses are largely due to the presence of unmethylated CpG motifs and their associated stimulatory sequences on plasmids, following bacterial propagation of plasmid DNA. Simple methylation of DNA in vitro may be enough to reduce an inflammatory response but is likely to result in severely depressed gene expression (6). The removal of CpG islands by cloning out, or elimination of non-essential sequences is more successful in reducing inflammatory responses but is time-consuming and tedious (7).Because bacterial DNA contains on average four times more CpG islands than does mammalian DNA (8), a good solution is to entirely eliminate the bacterial control regions from gene delivery vectors during the process of plasmid production. Removal of bacterial sequences needs to be efficient, using the smallest possible excision site, while creating supercoiled DNA minicircles, consisting solely of gene expression elements under appropriate mammalian control regions.This can be achieved by the use of Cre recombinase, a bacteriophage P1-derived integrase (9 -11), catalyzing site-specific recombination between direct repeats of 34 base pairs (loxP sites).In the case of a supercoiled plasmid containing DNA flanked by two loxP sites in the same orientation, Cre recombination produces two DNA molecules that are topologically unlinked, circular, and mainly supercoiled (10), each containing a single 34-bp 1 loxP site. Efficient minicircle production requires the use of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.