The presence of CpG motifs and their associated sequences in bacterial DNA causes an immunotoxic response following the delivery of these plasmid vectors into mammalian hosts. We describe a biotechnological approach to the elimination of this problem by the creation of a bacterial cre recombinase expression system, tightly controlled by the arabinose regulon. This permits the Cre-mediated and -directed excision of the entire bacterial vector sequences from plasmid constructs to create supercoiled gene expression minicircles for gene therapy. Minicircle yields using standard culture volumes are sufficient for most in vitro and in vivo applications whereas minicircle expression in vitro is significantly increased over standard plasmid transfection. By the simple expedient of removing the bacterial DNA complement, we significantly reduce the size and CpG content of these expression vectors, which should also reduce DNA-induced inflammatory responses in a dose-dependent manner. We further describe the generation of minicircle expression vectors for mammalian mitochondrial gene therapy, for which no other vector systems currently exist. The removal of bacterial vector sequences should permit appropriate transcription and correct transcriptional cleavage from the mitochondrial minicircle constructs in a mitochondrial environment and brings the realization of mitochondrial gene therapy a step closer.There is increasing evidence to suggest that plasmid DNA used for non-viral gene delivery can cause unacceptable inflammatory responses in eukaryotes (1-5). These immunotoxic responses are largely due to the presence of unmethylated CpG motifs and their associated stimulatory sequences on plasmids, following bacterial propagation of plasmid DNA. Simple methylation of DNA in vitro may be enough to reduce an inflammatory response but is likely to result in severely depressed gene expression (6). The removal of CpG islands by cloning out, or elimination of non-essential sequences is more successful in reducing inflammatory responses but is time-consuming and tedious (7).Because bacterial DNA contains on average four times more CpG islands than does mammalian DNA (8), a good solution is to entirely eliminate the bacterial control regions from gene delivery vectors during the process of plasmid production. Removal of bacterial sequences needs to be efficient, using the smallest possible excision site, while creating supercoiled DNA minicircles, consisting solely of gene expression elements under appropriate mammalian control regions.This can be achieved by the use of Cre recombinase, a bacteriophage P1-derived integrase (9 -11), catalyzing site-specific recombination between direct repeats of 34 base pairs (loxP sites).In the case of a supercoiled plasmid containing DNA flanked by two loxP sites in the same orientation, Cre recombination produces two DNA molecules that are topologically unlinked, circular, and mainly supercoiled (10), each containing a single 34-bp 1 loxP site. Efficient minicircle production requires the use of...
Choroideremia (CHM) is an X-linked retinal degeneration of photoreceptors, the retinal pigment epithelium (RPE) and choroid caused by loss of function mutations in the CHM/REP1 gene that encodes Rab escort protein 1. As a slowly progressing monogenic retinal degeneration with a clearly identifiable phenotype and a reliable diagnosis, CHM is an ideal candidate for gene therapy. We developed a serotype 2 adeno-associated viral vector AAV2/2-CBA-REP1, which expresses REP1 under control of CMV-enhanced chicken β-actin promoter (CBA) augmented by a Woodchuck hepatitis virus post-transcriptional regulatory element. We show that the AAV2/2-CBA-REP1 vector provides strong and functional transgene expression in the D17 dog osteosarcoma cell line, CHM patient fibroblasts and CHM mouse RPE cells in vitro and in vivo. The ability to transduce human photoreceptors highly effectively with this expression cassette was confirmed in AAV2/2-CBA-GFP transduced human retinal explants ex vivo. Electroretinogram (ERG) analysis of AAV2/2-CBA-REP1 and AAV2/2-CBA-GFP-injected wild-type mouse eyes did not show toxic effects resulting from REP1 overexpression. Subretinal injections of AAV2/2-CBA-REP1 into CHM mouse retinas led to a significant increase in a- and b-wave of ERG responses in comparison to sham-injected eyes confirming that AAV2/2-CBA-REP1 is a promising vector suitable for choroideremia gene therapy in human clinical trials.Electronic supplementary materialThe online version of this article (doi:10.1007/s00109-013-1006-4) contains supplementary material, which is available to authorized users.
We have previously described the development of a scaffold/matrix attachment region (S/MAR) episomal vector system for in vivo application and demonstrated its utility to sustain transgene expression in the mouse liver for at least 6 months following a single administration. Subsequently, we observed that transgene expression is sustained for the lifetime of the animal. The level of expression, however, does drop appreciably over time. We hypothesised that by eliminating the bacterial components in our vectors, we could improve their performance since bacterial sequences have been shown to be responsible for the immunotoxicity of the vector and the silencing of its expression when applied in vivo. We describe here the development of a minimally sized S/MAR vector, which is devoid of extraneous bacterial sequences. This minicircle vector comprises an expression cassette and an S/MAR moiety, providing higher and more sustained transgene expression for several months in the absence of selection, both in vitro and in vivo. In contrast to the expression of our original S/MAR plasmid vector, the novel S/MAR minicircle vectors mediate increased transgene expression, which becomes sustained at about twice the levels observed immediately after administration. These promising results demonstrate the utility of minimally sized S/MAR vectors for persistent, atoxic gene expression.
Lentiviral CHM/REP1 cDNA transgene rescues the prenylation defect in CHM mouse RPE and thus could be used to restore REP1 activity in the RPE of CHM patients.
Our results indicate that the combination of a minicircle DNA construct with a TetR nuclear-targeting system is able to potentiate gene expression of non-viral vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.