The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant, stem-like and reproducibly detectable for the purposes of prognostic stratification. Expression of TLR4 and MyD88 was assessed immunohistochemically in 198 paraffin-embedded ovarian tissues and in an embryonal carcinoma model of cancer stemness. In parallel, expression of TLR4 and MyD88 mRNA and regulatory microRNAs (miR-21 and miR-146a) was assessed, as well as in a series of chemosensitive and resistant cancer cells lines. Functional analysis of the pathway was assessed in chemoresistant SKOV-3 ovarian cancer cells. TLR4 and MyD88 expression can be reproducibly assessed via immunohistochemistry using a semi-quantitative scoring system. TLR4 expression was present in all ovarian epithelium (normal and neoplastic), whereas MyD88 was restricted to neoplastic cells, independent of tumour grade and associated with reduced progression-free and overall survival, in an immunohistological specific subset of serous carcinomas, p<0.05. MiR-21 and miR-146a expression was significantly increased in MyD88 negative cancers (p<0.05), indicating their participation in regulation. Significant alterations in MyD88 mRNA expression were observed between chemosensitive and chemoresistant cells and tissue. Knockdown of TLR4 in SKOV-3 ovarian cells recovered chemosensitivity. Knockdown of MyD88 alone did not. MyD88 expression was down-regulated in differentiated embryonal carcinoma (NTera2) cells, supporting the MyD88+ cancer stem cell hypothesis. Our findings demonstrate that expression of MyD88 is associated with significantly reduced patient survival and altered microRNA levels and suggest an intact/functioning TLR4/MyD88 pathway is required for acquisition of the chemoresistant phenotype. Ex vivo manipulation of ovarian cancer stem cell (CSC) differentiation can decrease MyD88 expression, providing a potentially valuable CSC model for ovarian cancer.
The Saint James's Hospital Biobank was established in 2008, to develop a high-quality breast tissue BioResource, as a part of the breast cancer clinical care pathway. The aims of this work were: (1) to ascertain the quality of RNA, DNA, and protein in biobanked carcinomas and normal breast tissues, (2) to assess the efficacy of AllPrep(®) (Qiagen) in isolating RNA, DNA, and protein simultaneously, (3) to compare AllPrep with RNEasy(®) and QIAamp(®) (both Qiagen), and (4) to examine the effectiveness of Allprotect(®) (Qiagen), a new tissue stabilization medium in preserving DNA, RNA, and proteins. One hundred eleven frozen samples of carcinoma and normal breast tissue were analyzed. Tumor and normal tissue morphology were confirmed by frozen sections. Tissue type, tissue treatment (Allprotect vs. no Allprotect), extraction kit, and nucleic acid quantification were analyzed by utilizing a 4 factorial design (SPSS PASW 18 Statistics Software(®)). QIAamp (DNA isolation), AllPrep (DNA, RNA, and Protein isolation), and RNeasy (RNA isolation) kits were assessed and compared. Mean DNA yield and A(260/280) values using QIAamp were 33.2 ng/μL and 1.86, respectively, and using AllPrep were 23.2 ng/μL and 1.94. Mean RNA yield and RNA Integrity Number (RIN) values with RNeasy were 73.4 ng/μL and 8.16, respectively, and with AllPrep were 74.8 ng/μL and 7.92. Allprotect-treated tissues produced higher RIN values of borderline significance (P=0.055). No discernible loss of RNA stability was detected after 6 h incubation of stabilized or nonstabilized tissues at room temperature or 4°C or in 9 freeze-thaw cycles. Allprotect requires further detailed evaluation, but we consider AllPrep to be an excellent option for the simultaneous extraction of RNA, DNA, and protein from tumor and normal breast tissues. The essential presampling procedures that maintain the diagnostic integrity of pathology specimens do not appear to compromise the quality of molecular isolates.
Platinum resistance is a major cause of treatment failure in ovarian cancer. We previously identified matrix metalloproteinase 9 (MMP-9) as a potential therapeutic target of chemoresistant disease. A2780cis (cisplatin-resistant) and A2780 (cisplatin-sensitive) ovarian carcinoma cell lines were used. The cytotoxic effect of MMP-9/MMP-2 inhibitor, (2R)-2-[(4-Biphenylsulfonyl) amino]-3 phenylpropionic acid (C21H19NO4S) alone or in combination with cisplatin was determined using high content screening. Protein expression was examined using immunohistochemistry and ELISA. Co-incubation of cisplatin and an MMP-9/MMP-2 inhibitor, (2R)-2-[(4-Biphenylsulfonyl) amino]-3 phenylpropionic acid (C21H19NO4S) resulted in significantly greater cytotoxicity as compared to either treatment alone in a cisplatin resistant MMP-9 overexpressing cell line; A2780cis. In addition, pre-incubating with MMP-9i prior to cisplatin further enhances the cytotoxic effect. No significant difference was observed in MMP-9 protein in tissue but a trend towards increased MMP-9 was observed in recurrent serum. We propose that MMP-9/MMP-2i may be utilized in the treatment of recurrent/chemoresistant ovarian cancers that overexpress MMP-9 mRNA but its role in vivo remains to be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.