There are limited data on the impact of COVID‐19 in children with a kidney transplant (KT). We conducted a prospective cohort study through the Improving Renal Outcomes Collaborative (IROC) to collect clinical outcome data about COVID‐19 in pediatric KT patients. Twenty‐two IROC centers that care for 2732 patients submitted testing and outcomes data for 281 patients tested for SARS‐CoV‐2 by PCR. Testing indications included symptoms and/or potential exposures to COVID‐19 ( N = 134, 47.7%) and/or testing per hospital policy ( N = 154, 54.8%). Overall, 24 (8.5%) patients tested positive, of which 15 (63%) were symptomatic. Of the COVID‐19‐positive patients, 16 were managed as outpatients, six received non‐ICU inpatient care and two were admitted to the ICU. There were no episodes of respiratory failure, allograft loss, or death associated with COVID‐19. To estimate incidence, subanalysis was performed for 13 centers that care for 1686 patients that submitted all negative and positive COVID‐19 results. Of the 229 tested patients at these 13 centers, 10 (5 asymptomatic) patients tested positive, yielding an overall incidence of 0.6% and an incidence among tested patients of 4.4%. Pediatric KT patients in the United States had a low estimated incidence of COVID‐19 disease and excellent short‐term outcomes.
Patient-identified barriers to immunosuppressive medications are associated with poor adherence and negative clinical outcomes in transplant patients. Assessment of adherence barriers is not part of routine post-transplant care, and studies regarding implementing such a process in a reliable way are lacking. Using the Model for Improvement and PDSA cycles, we implemented a system to identify adherence barriers, including patient-centered design of a barriers assessment tool, identification of eligible patients, clear roles for clinic staff, and creating a culture of non-judgmental discussion around adherence. We performed time-series analysis of our process measure. Secondary analyses examined the endorsement and concordance of adherence barriers between patient-caregiver dyads. After three methods of testing, the most reliable delivery system was an EHR-integrated tablet that alerted staff of patient eligibility for assessment. Barriers were endorsed by 35% of caregivers (n=85) and 43% of patients (n=60). The most frequently patient-endorsed barriers were forgetting, poor taste, and side effects. Caregivers endorsed forgetting and side effects. Concordance between patient-caregiver dyads was fair (k=0.299). Standardized adherence barriers assessment is feasible in the clinical care of pediatric kidney transplant patients. Features necessary for success included automation, redundant systems with designated staff to identify and mitigate failures, aligned reporting structures, and reliable measurement approaches. Future studies will examine whether barriers predict clinical outcomes (eg, organ rejection, graft loss).
Primary cilia sense environmental conditions, including osmolality, but whether cilia participate in the osmotic response in renal epithelial cells is not known. The transient receptor potential (TRP) channels TRPV4 and TRPM3 are osmoresponsive. TRPV4 localizes to cilia in certain cell types, while renal subcellular localization of TRPM3 is not known. We hypothesized that primary cilia are required for maximal activation of the osmotic response of renal epithelial cells and that ciliary TRPM3 and TRPV4 mediate that response. Ciliated [murine epithelial cells from the renal inner medullary collecting duct (mIMCD-3) and 176-5] and nonciliated (176-5Δ) renal cells expressed and Ciliary expression of TRPM3 was observed in mIMCD-3 and 176-5 cells and in wild-type mouse kidney tissue. TRPV4 was identified in cilia and apical membrane of mIMCD-3 cells by electrophysiology and in the cell body by immunofluorescence. Hyperosmolal stress at 500 mOsm/kg (via NaCl addition) induced the osmotic response genes betaine/GABA transporter () and aldose reductase () in all ciliated cell lines. This induction was attenuated in nonciliated cells. A TRPV4 agonist abrogated and induction in ciliated and nonciliated cells. A TRPM3 agonist attenuated and induction in ciliated cells only. TRPM3 knockout attenuated induction. Viability under osmotic stress was greater in ciliated than nonciliated cells. induction was also less in nonciliated than ciliated cells when mannitol was used to induce hyperosmolal stress. These findings suggest that primary cilia are required for the maximal osmotic response in renal epithelial cells and that TRPM3 is involved in this mechanism. TRPV4 appears to modulate the osmotic response independent of cilia.
The coronavirus disease 2019 (COVID-19) pandemic has disproportionately affected patients with kidney disease, causing significant challenges in disease management, kidney research and trainee education. For patients, increased infection risk and disease severity, often complicated by acute kidney injury, have contributed to high mortality. Clinicians were faced with high clinical demands, resource shortages and novel ethical dilemmas in providing patient care. In this review, we address the impact of COVID-19 on the entire spectrum of kidney care, including acute kidney injury, chronic kidney disease, dialysis and transplantation, trainee education, disparities in health care, changes in health care policies, moral distress and the patient perspective. Based on current evidence, we provide a framework for the management and support of patients with kidney disease, infection mitigation strategies, resource allocation and support systems for the nephrology workforce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.