In this paper we address the problem of automatic event detection in athlete motion for automated performance analysis in athletics. We specifically consider the detection of stride-, jump-and landing related events from monocular recordings in long and triple jump. Existing work on event detection in sports often uses manually designed features on body and pose configurations of the athlete to infer the occurrence of events. We present a two-step approach, where temporal 2D pose sequences extracted from the videos form the basis for learning an event detection model. We formulate the detection of discrete events as a sequence translation task and propose a convolutional sequence network that can accurately predict the timing of event occurrences. Our best performing architecture achieves a precision/recall of 92.3%/89.0% in detecting start and end of ground contact during the run-up and jump of an athlete at a temporal precision of ±1 frame at 200Hz. The results show that 2D pose sequences are a suitable motion representation for learning event detection in a sequence-to-sequence framework. CCS CONCEPTS• Computing methodologies → Visual content-based indexing and retrieval; Neural networks; Object detection. KEYWORDS event detection, video indexing, computer vision in sports, convolutional sequence modeling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.