Mappings between fermions and qubits are valuable constructions in physics. To date only a handful exist. In addition to revealing dualities between fermionic and spin systems, such mappings are indispensable in any quantum simulation of fermionic physics on quantum computers. The number of qubits required per fermionic mode, and the locality of mapped fermionic operators strongly impact the cost of such simulations. We present a fermion to qubit mapping that outperforms all previous local mappings in both the qubit to mode ratio and the locality of mapped operators. In addition to these practically useful features, the mapping bears an elegant relationship to the toric code, which we discuss. Finally, we consider the error mitigating properties of the mapping-which encodes fermionic states into the code space of a stabilizer code. Although there is an implicit tradeoff between low weight representations of local fermionic operators, and high distance code spaces, we argue that fermionic encodings with low-weight representations of local fermionic operators can still exhibit error mitigating properties which can serve a similar role to that played by high code distances. In particular, when undetectable errors correspond to "natural" fermionic noise. We illustrate this point explicitly both for this encoding and the Verstraete-Cirac encoding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.