Background Viruses including Epstein-Barr virus (EBV), a human equivalent of murine mammary tumour virus (MMTV) and human papillomavirus (HPV) have been implicated in the aetiology of human breast cancer. We report the presence of HPV DNA sequences in areolar tissue and tumour tissue samples from female patients with breast carcinoma. The presence of virus in the areolar-nipple complex suggests to us a potential pathogenic mechanism.
The inactivation of HEp-2 cell-associated poliovirus (Sabin 1) and coxsackievirus A9 was investigated in three experimental systems, using ozone as a disinfectant. The cell-associated viral samples were adjusted to a turbidity of 5 nephelometric turbidity units. The cell-associated poliovirus and coxsackievirus samples demonstrated survival in a continuous-flow ozonation system at applied ozone dosages of 4.06 and 4.68 mg/liter, respectively, for 30 s. Unassociated viral controls were inactivated by the application of 0.081 mg of ozone per liter for 10 s. Ultrasonic treatment of cell-associated enteric viruses did not increase inactivation of the cell-associated viruses. The batch reactor with a declining ozone residual did not effect total inactivation of either cell-associated enteric virus. These cell-associated viruses were completely inactivated after exposure to ozone in a batch reactor using continuous ozonation. Inactivation of cell-associated poliovirus required a 2-min contact period with an applied ozone dosage of 6.82 mg/liter and a residual ozone concentration of 4.70 mg/liter, whereas the coxsackievirus was completely inactivated after a 5-min exposure to an applied ozone dosage of 4.81 mg/liter with an ozone residual of 2.18 mg/liter. These data indicate that viruses associated with cells or cell fragments are protected from inactivation by ozone concentrations that readily inactivate purified virus. The cell-associated viral samples used in this research contained particles that were 10 to 15 microns in size. Use of a filtration system before ozonation would remove these particles, thereby facilitating inactivation of any remaining viruses associated with cellular fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.