Mammals receive light information through the eyes, which perform two major functions: image forming vision to see objects and non-image forming adaptation of physiology and behavior to light. Cone and rod photoreceptors form images and send the information via retinal ganglion cells to the brain for image reconstruction. In contrast, nonimage-forming photoresponses vary widely from adjustment of pupil diameter to adaptation of the circadian clock. nonimage-forming responses are mediated by retinal ganglion cells expressing the photopigment melanopsin. Melanopsin-expressing cells constitute 1–2% of retinal ganglion cells in the adult mammalian retina, are intrinsically photosensitive, and integrate photic information from rods and cones to control nonimage-forming adaptation. Action spectra of ipRGCs and of melanopsin photopigment peak around 480 nm blue light. Understanding melanopsin function lets us recognize considerable physiological effects of blue light, which is increasingly important in our modern society that uses light-emitting diode. Misalignment of circadian rhythmicity is observed in numerous conditions, including aging, and is thought to be involved in the development of age-related disorders, such as depression, diabetes, hypertension, obesity, and cancer. The appropriate regulation of circadian rhythmicity by proper lighting is therefore essential. This perspective introduces the potential risks of excessive blue light for human health through circadian rhythm disruption and sleep deprivation. Knowing the positive and negative aspects, this study claims the importance of being exposed to light at optimal times and intensities during the day, based on the concept of the circadian clock, ultimately to improve quality of life to have a healthy and longer life.
Electron emitters in vacuum microelectronic devices need sharp tips in order to permit electron emission at moderate voltages. A method has been found for preparing uniform silicon tips with a radius of curvature less than 1 nm. These tips are formed by oxidation of 5-μm-high silicon cones through exploitation of a known oxidation inhibition of silicon at regions of high curvature.
The requirements of low-energy excitation combined with practical constraints of commercial supply and other issues, mandate the use of readily available commercial CRT phosphors, such as ZnS and Y 2 O 3 -based P22, for first-generation field-emission flat-panel displays. The use of these phosphors at low ͑e.g., р2-4 kV͒ excitation energies places considerable problems with brightness, efficacy, spectral response, long-term reliability, screen manufacture and materials synthesis, surface conditioning and outgassing protection, and low-cost manufacturing. The tradeoffs imposed by using phosphors designed for optimum performance in the 15-30 kV range at the low voltages employed by field-emission displays are presented and discussed.
Some quinolone antibiotics cause increases in levels of theophylline in plasma that lead to serious adverse effects. We investigated the mechanism of this interaction by developing an in vitro system of human liver microsomes. Theophylline (1,3-dimethylxanthine) was incubated with human liver microsomes in the presence of enoxacin, ciprofloxacin, norfloxacin, or ofloxacin. Theophylline, its demethylated metabolites (3-methylxanthine and 1-methylxanthine), and its hydroxylated metabolite (1,3-dimethyluric acid) were measured by high-pressure liquid chromatography, and Km and Vm,,, values were estimated. Enoxacin and ciprofloxacin selectively blocked the two N demethylations; they significantly inhibited the hydroxylation only at high concentrations. Norfloxacin and ofloxacin caused little or no inhibition of the three metabolites at comparable concentrations. The extent of inhibition was reproducible in five different human livers. Inhibition enzyme kinetics revealed that enoxacin caused competitive and mixed competitive types of inhibition. The oxo metabolite of enoxacin caused little inhibition of theophylline metabolism and was much less potent than the parent compound. Nonspecific inhibition of cytochrome P-450 was ruled out since erythromycin N demethylation (cytochrome P-450 mediated) was unaffected in the presence of enoxacin. These in vitro data correlate with the clinical interaction described for these quinolones and theophylline. We conclude that some quinolones are potent and selective inhibitors of specific isozymes of human cytochrome P-450 that are responsible for theophyiline metabolism. This in vitro system may be useful as a model to screen similar compounds for early identification of potential drug interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.