Early detection and improved treatments for cancer have resulted in roughly 12 million survivors alive in the United States today. This growing population faces unique challenges from their disease and treatments, including risk for recurrent cancer, other chronic diseases, and persistent adverse effects on physical functioning and quality of life. Historically, clinicians advised cancer patients to rest and to avoid activity; however, emerging research on exercise has challenged this recommendation. To this end, a roundtable was convened by American College of Sports Medicine to distill the literature on the safety and efficacy of exercise training during and after adjuvant cancer therapy and to provide guidelines. The roundtable concluded that exercise training is safe during and after cancer treatments and results in improvements in physical functioning, quality of life, and cancer-related fatigue in several cancer survivor groups. Implications for disease outcomes and survival are still unknown. Nevertheless, the benefits to physical functioning and quality of life are sufficient for the recommendation that cancer survivors follow the 2008 Physical Activity Guidelines for Americans, with specific exercise programming adaptations based on disease and treatment-related adverse effects. The advice to "avoid inactivity," even in cancer patients with existing disease or undergoing difficult treatments, is likely helpful.
Sedentary behaviors are linked to adverse health outcomes, but the total amount of time spent in these behaviors in the United States has not been objectively quantified. The authors evaluated participants from the 2003-2004 National Health and Nutrition Examination Survey aged >/=6 years who wore an activity monitor for up to 7 days. Among 6,329 participants with at least one 10-hour day of monitor wear, the average monitor-wearing time was 13.9 hours/day (standard deviation, 1.9). Overall, participants spent 54.9% of their monitored time, or 7.7 hours/day, in sedentary behaviors. The most sedentary groups in the United States were older adolescents and adults aged >/=60 years, and they spent about 60% of their waking time in sedentary pursuits. Females were more sedentary than males before age 30 years, but this pattern was reversed after age 60 years. Mexican-American adults were significantly less sedentary than other US adults, and White and Black females were similarly sedentary after age 12 years. These data provide the first objective measure of the amount of time spent in sedentary behavior in the US population and indicate that Americans spend the majority of their time in behaviors that expend very little energy.
These are the first population-representative findings on the deleterious associations of prolonged sedentary time with cardio-metabolic and inflammatory biomarkers. The findings suggest that clinical communications and preventive health messages on reducing and breaking up sedentary time may be beneficial for cardiovascular disease risk.
Introduction The use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for validation of subjective PA self-reports. A vital step in PA measurements is classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. Purpose To validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. Methods We conducted a validation study of a wear/nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. Results The recommended elements in the new algorithm are: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero/nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the up/downstream 30-min consecutive zero counts window for detection of artifactual movements. Compared to the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P < 0.001). Conclusions The accelerometer wear/nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.
Even when adults meet physical activity guidelines, sitting for prolonged periods can compromise metabolic health. TV time and objective-measurement studies show deleterious associations, and breaking up sedentary time is beneficial. Sitting time, TV time, and time sitting in automobiles increase premature mortality risk. Further evidence from prospective studies, intervention trials, and population-based behavioral studies is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.