Human serum albumin (HSA) is the major protein component of blood plasma and serves as a transporter for thyroxine and other hydrophobic compounds such as fatty acids and bilirubin. We report here a structural characterization of HSA-thyroxine interactions. Using crystallographic analyses we have identified four binding sites for thyroxine on HSA distributed in subdomains IIA, IIIA, and IIIB. Mutation of residue R218 within subdomain IIA greatly enhances the affinity for thyroxine and causes the elevated serum thyroxine levels associated with familial dysalbuminemic hyperthyroxinemia (FDH). Structural analysis of two FDH mutants of HSA (R218H and R218P) shows that this effect arises because substitution of R218, which contacts the hormone bound in subdomain IIA, produces localized conformational changes to relax steric restrictions on thyroxine binding at this site. We have also found that, although fatty acid binding competes with thyroxine at all four sites, it induces conformational changes that create a fifth hormone-binding site in the cleft between domains I and III, at least 9 Å from R218. These structural observations are consistent with binding data showing that HSA retains a high-affinity site for thyroxine in the presence of excess fatty acid that is insensitive to FDH mutations.
Polymorphisms in genomic fingerprints generated by arbitrarily primed PCR (AP-PCR) can distinguish between strains of almost any organism. We applied the technique to the mouse (Mus musculus). The characteristic differences in the AP-PCR genomic fingerprints between strains will be of value in strain identification and verification. Using one primer, we genetically mapped four polymorphisms in a set of C57BL/6J x DBA/2J recombinant inbreds. One of these polymorphisms is a length variant. The method will allow rapid genetic mapping of DNA polymorphisms without Southern blotting.
Site-directed mutagenesis of human serum albumin was used to study the role of various amino acid residues in bilirubin binding. A comparison of thermodynamic, proteolytic, and x-ray crystallographic data from previous studies allowed a small number of amino acid residues in subdomain 2A to be selected as targets for substitution. The following recombinant human serum albumin species were synthesized in the yeast species Pichia pastoris: K195M, K199M, F211V, W214L, R218M, R222M, H242V, R257M, and wild type human serum albumin. The affinity of bilirubin was measured by two independent methods and found to be similar for all human serum albumin species. Examination of the absorption and circular dichroism spectra of bilirubin bound to its high affinity site revealed dramatic differences between the conformations of bilirubin bound to the above human serum albumin species. The absorption and circular dichroism spectra of bilirubin bound to the above human serum albumin species in aqueous solutions saturated with chloroform were also examined. The effect of certain amino acid substitutions on the conformation of bound bilirubin was altered by the addition of chloroform. In total, the present study suggests a dynamic, unusually flexible high affinity binding site for bilirubin on human serum albumin.The binding of bilirubin, a toxic metabolite of heme, to human serum albumin (HSA) 1 has been studied extensively for many years. Early medical interest in the bilirubin-HSA interaction arose when it became clear to physicians that prolonged high blood concentrations of bilirubin, which often occur in premature infants, could result in bilirubin encephalopathy (1-5). In this condition, significant amounts of bilirubin, which is toxic to all tissues, partitions from the blood to neuronal tissue causing irreversible brain damage. The prolonged high blood concentrations of bilirubin in premature infants results from underdevelopment of the liver, the organ responsible for conversion of bilirubin to a soluble form and its excretion into the bile. HSA binds bilirubin (K d ϭ 10 Ϫ7 -10 Ϫ8 M) at a high affinity site and acts as a buffer preventing the transfer of bilirubin from blood to the tissues, thus playing a critical role in impairing the development of bilirubin encephalopathy. In total, other studies on the pathology of bilirubin encephalopathy in premature infants have highlighted the importance of HSA as a bilirubin transport molecule in normal neonates (who experience a transient hyperbilirubinemia after birth) and in normal adults. These findings provided the motivation for many years of study on the bilirubin-HSA binding mechanism, making it one of the most studied of the HSA-ligand interactions (6 -11).Although some studies have suggested that lower affinity binding components (K d ϭ 10 Ϫ6 -10 Ϫ3 M) contribute to HSAbilirubin binding, most studies have primarily attempted to locate the high affinity binding site and to identify amino acid residues involved in the high affinity binding process. A number of studies th...
Previous evidence suggests multiple anesthetic binding sites on human serum albumin, but to date, we have only identified Trp-214 in an interdomain cleft as contributing to a binding site. We used a combination of site-directed mutagenesis, photoaffinity labeling, amide hydrogen exchange, and tryptophan fluorescence spectroscopy to evaluate the importance to binding of a large domain III cavity and compare it to binding character of the 214 interdomain cleft. The data show anesthetic binding in this domain III cavity of similar character to the interdomain cleft, but selectivity for different classes of anesthetics exists. Occupancy of these sites stabilizes the native conformation of human serum albumin. The features necessary for binding in the cleft appear to be fairly degenerate, but in addition to hydrophobicity, there is evidence for the importance of polarity. Finally, myristate isosterically competes with anesthetic binding in the domain III cavity and allosterically enhances anesthetic binding in the interdomain cleft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.