Whereas gamma-band neuronal oscillations clearly appear integral to visual attention, the role of lower-frequency oscillations is still being debated. Mounting evidence indicates that a key functional property of these oscillations is the rhythmic shifting of excitability in local neuronal ensembles. Here, we show that when attended stimuli are in a rhythmic stream, delta-band oscillations in the primary visual cortex entrain to the rhythm of the stream, resulting in increased response gain for task-relevant events and decreased reaction times. Because of hierarchical cross-frequency coupling, delta phase also determines momentary power in higher-frequency activity. These instrumental functions of low-frequency oscillations support a conceptual framework that integrates numerous earlier findings.
Neuroelectric oscillations reflect rhythmic shifting of neuronal ensembles between high and low excitability states. In natural settings, important stimuli often occur in rhythmic streams, and when oscillations entrain to an input rhythm their high excitability phases coincide with events in the stream, effectively amplifying neuronal input responses. When operating in a 'rhythmic mode', attention can use these differential excitability states as a mechanism of selection by simply enforcing oscillatory entrainment to a task-relevant input stream. When there is no low-frequency rhythm that oscillations can entrain to, attention operates in a 'continuous mode', characterized by extended increase in gamma synchrony. We review the evidence for early sensory selection by oscillatory phase-amplitude modulations, its mechanisms and its perceptual and behavioral consequences.
EEG oscillations are hypothesized to reflect cyclical variations in the neuronal excitability, with particular frequency bands reflecting differing spatial scales of brain operation. However, despite decades of clinical and scientific investigation, there is no unifying theory of EEG organization, and the role of ongoing activity in sensory processing remains controversial. This study analyzed laminar profiles of synaptic activity [current source density CSD] and multiunit activity (MUA), both spontaneous and stimulus-driven, in primary auditory cortex of awake macaque monkeys. Our results reveal that the EEG is hierarchically organized; delta (1-4 Hz) phase modulates theta (4-10 Hz) amplitude, and theta phase modulates gamma (30-50 Hz) amplitude. This oscillatory hierarchy controls baseline excitability and thus stimulus-related responses in a neuronal ensemble. We propose that the hierarchical organization of ambient oscillatory activity allows auditory cortex to structure its temporal activity pattern so as to optimize the processing of rhythmic inputs.
Recent anatomical, physiological, and neuroimaging findings indicate multisensory convergence at early, putatively unisensory stages of cortical processing. The objective of this study was to confirm somatosensory-auditory interaction in A1 and to define both its physiological mechanisms and its consequences for auditory information processing. Laminar current source density and multiunit activity sampled during multielectrode penetrations of primary auditory area A1 in awake macaques revealed clear somatosensory-auditory interactions, with a novel mechanism: somatosensory inputs appear to reset the phase of ongoing neuronal oscillations, so that accompanying auditory inputs arrive during an ideal, high-excitability phase, and produce amplified neuronal responses. In contrast, responses to auditory inputs arriving during the opposing low-excitability phase tend to be suppressed. Our findings underscore the instrumental role of neuronal oscillations in cortical operations. The timing and laminar profile of the multisensory interactions in A1 indicate that nonspecific thalamic systems may play a key role in the effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.