In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three‐dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two‐dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer tests results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small‐scale) and simulation (large‐scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations.
The dynamics of the flow field surrounding New Zealand are investigated using a series of global ocean models. The physical mechanisms governing the direction, magnitude, and location of the East Australian Current (EAC), the Tasman Front, the East Auckland Current (EAUC), and the East Cape Current (ECC) are studied using numerical simulations whose complexity is systematically increased. As new dynamics are added to each successive simulation, their direct and indirect effects on the flow field are examined. The simulations have horizontal resolutions of 1/8Њ, 1/16Њ, or 1/32Њ for each variable, and vertical resolutions ranging from 1.5-layer reduced gravity to 6-layer finite depth with realistic bottom topography. All simulations are forced by the Hellerman and Rosenstein monthly wind stress climatology. Analysis of these simulations shows that several factors play a critical role in governing the behavior of the examined currents. These factors include 1) mass balance of water pathways through the region, 2) gradients in the wind stress curl, 3) nonlinear flow instabilities, and 4) upper-ocean-topographic coupling due to mixed baroclinic and barotropic instabilities. Transport streamfunctions of a linear reduced gravity model reproduce the large-scale features well but produce an EAUC that flows counter to the observed direction. The residual of the mass balance of the transport through the Tasman Sea, the basinwide transport at 32ЊS, and the transport of the South Pacific subtropical gyre east of New Zealand determines the direction of the EAUC. The 6-layer nonlinear model allows isopycnal outcropping, which changes the transport through the Tasman Sea and produces an EAUC flowing in the observed direction. Gradients in the zonally integrated wind stress curl field determine the coastal separation points of the EAC, the EAUC, and the ECC, while a combination of nonlinear flow instabilities and upper-ocean-topographic coupling contribute to the formation of meanders in the Tasman Front. Increased resolution results in greater mixed baroclinicbarotropic instabilities and thus more upper-ocean-topographic coupling and surface variability, giving a more accurate simulation of topographically controlled mean meanders in the Tasman Front.
[1] TOPEX/Poseidon satellite altimeter observations and the Naval Research Laboratory Layered Ocean Model simulations show interannual variability in the number and intensity of Tehuantepec eddies off the Mexican southwest coast. Analysis of the results illustrates that downwelling coastally trapped waves, which are generated in the equatorial Pacific, play a crucial role in the modulation and generation of Tehuantepec eddies and a dominant role in Tehuantepec eddy interannual variability. This introduces a new paradigm in which the generation and modulation of Tehuantepec eddies is not exclusively explained in terms of the strong and intermittent Tehuantepec wind events. In fact, the results show anticyclonic eddy formation during periods of calm Tehuantepec winds. That is specifically exemplified by the formation of two anticyclonic Tehuantepec eddies during a 5-month period of weak Gulf of Tehuantepec winds during summer of 1997. Furthermore, the satellite-observed and NLOM-simulated proliferation of Tehuantepec eddies during El Niño years is explained by the corresponding increase in downwelling coastally trapped waves and a lack of increase in the number and strength of Tehuantepec wind events during El Niño years.Citation: Zamudio, L
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.