Meteorological conditions associated with more than 150 intense convective precipitation events have been examined. These heavy rainfalls caused flash floods and affected most geographic regions of the conterminous United States. Heavy rains associated with weather systems of tropical origin were not considered. Analyses of surface and standard level upperair data were undertaken to identify and define important synoptic and mesoscale mechanisms that act to intensify and focus precipitation events over specific regions. These analyses indicated that three basic meteorological patterns were associated with flash flooding in the central and eastern United States. Heavy convective precipitation episodes that occurred in the West were considered as a separate category event. Climatological characteristics, composite analyses, and upperair data are presented for these four classifications of events.The large variability of associated meteorological patterns and parameters (especially winds aloft) makes identification of necessary conditions for flash flood-producing rainfall quite difficult; however, a number of features were common to many of the events. An advancing middle-level, short-wave trough often helped to trigger and focus thunderstorm activity. The storm areas were often located very near the mid-tropospheric, large-scale ridge position and occurred within normally benign surface pressure patterns. Many of the intense rainfalls occurred during nighttime hours. These elusive characteristics further complicate a difficult forecast problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.