Normal glomerular capillaries filter plasma through a basement membrane (GBM) rich in ␣ 3(IV), ␣ 4(IV), and ␣ 5(IV) chains of type IV collagen. We now show that these latter isoforms are absent biochemically from the glomeruli in patients with X-linked Alport syndrome (XAS). Their GBM instead retain a fetal distribution of ␣ 1(IV) and ␣ 2(IV) isoforms because they fail to developmentally switch their ␣ -chain use. The anomalous persistence of these fetal isoforms of type IV collagen in the GBM in XAS also confers an unexpected increase in susceptibility to proteolytic attack by collagenases and cathepsins. The incorporation of cysteine-rich ␣ 3(IV), ␣ 4(IV), and ␣ 5(IV) chains into specialized basement membranes like the GBM may have normally evolved to protectively enhance their resistance to proteolytic degradation at the site of glomerular filtration. The relative absence of these potentially protective collagen IV isoforms in GBM from XAS may explain the progressive basement membrane splitting and increased damage as these kidneys deteriorate. ( J. Clin. Invest. 1997. 99:2470-2478.)
The transforming growth factor (TGF)--inducible integrin ␣v6 is preferentially expressed at sites of epithelial remodeling and has been shown to bind and activate latent precursor TGF-. Herein , we show that ␣v6 is overexpressed in human kidney epithelium in membranous glomerulonephritis , diabetes mellitus , IgA nephropathy , Goodpasture's syndrome , and Alport syndrome renal epithelium. To assess the potential regulatory role of ␣v6 in renal disease , we studied the effects of functionblocking ␣v6 monoclonal antibodies (mAbs) and genetic ablation of the 6 subunit on kidney fibrosis in Col4A3 ؊/؊ mice , a mouse model of Alport syndrome. Expression of ␣v6 in Alport mouse kidneys was observed primarily in cortical tubular epithelial cells and in correlation with the progression of fibrosis. Treatment with ␣v6-blocking mAbs inhibited accumulation of activated fibroblasts and deposition of interstitial collagen matrix. Similar inhibition of renal fibrosis was observed in 6-deficient Alport mice. Transcript profiling of kidney tissues showed that ␣v6-blocking mAbs significantly inhibited disease-associated changes in expression of fibrotic and inflammatory mediators. Similar patterns of transcript modulation were produced with recombinant soluble TGF- RII treatment , suggesting shared regulatory functions of ␣v6 and TGF-. These findings demonstrate that ␣v6 can contribute to the regulation of renal fibrosis and suggest this integrin as a potential therapeutic target.
BackgroundGlomerular basement membrane (GBM), a key component of the blood-filtration apparatus in the in the kidney, is formed through assembly of type IV collagen with laminins, nidogen, and sulfated proteoglycans. Mutations or deletions involving α3(IV), α4(IV), or α5(IV) chains of type IV collagen in the GBM have been identified as the cause for Alport syndrome in humans, a progressive hereditary kidney disease associated with deafness. The pathological mechanisms by which such mutations lead to eventual kidney failure are not completely understood.Methods and FindingsWe showed that increased susceptibility of defective human Alport GBM to proteolytic degradation is mediated by three different matrix metalloproteinases (MMPs)—MMP-2, MMP-3, and MMP-9—which influence the progression of renal dysfunction in α3(IV) −/− mice, a model for human Alport syndrome. Genetic ablation of either MMP-2 or MMP-9, or both MMP-2 and MMP-9, led to compensatory up-regulation of other MMPs in the kidney glomerulus. Pharmacological ablation of enzymatic activity associated with multiple GBM-degrading MMPs, before the onset of proteinuria or GBM structural defects in the α3(IV) −/− mice, led to significant attenuation in disease progression associated with delayed proteinuria and marked extension in survival. In contrast, inhibition of MMPs after induction of proteinuria led to acceleration of disease associated with extensive interstitial fibrosis and early death of α3(IV) −/− mice. ConclusionsThese results suggest that preserving GBM/extracellular matrix integrity before the onset of proteinuria leads to significant disease protection, but if this window of opportunity is lost, MMP-inhibition at the later stages of Alport disease leads to accelerated glomerular and interstitial fibrosis. Our findings identify a crucial dual role for MMPs in the progression of Alport disease in α3(IV) −/− mice, with an early pathogenic function and a later protective action. Hence, we propose possible use of MMP-inhibitors as disease-preventive drugs for patients with Alport syndrome with identified genetic defects, before the onset of proteinuria.
The glomerular basement membrane (GBM) is damaged in diabetes through complex mechanisms that are not fully understood. Prominent among them is nonenzymatic protein glycation leading to the formation of so-called advanced glycation end products (AGEs). We examined the effects of in vitro glycation of intact collagen type IV in bovine lens capsule (LBM) and kidney glomerular (GBM) basement membranes on their susceptibility to matrix metalloproteinases, using stromelysin 1 (MMP-3) and gelatinase B (MMP-9). Sites of cleavage of unmodified LBM collagen were located in the triple helical region. In vitro glycation by glucose severely inhibited the release of soluble collagen cleavage peptides by MMP-3 and MMP-9. The distribution of AGEs within the three domains of collagen IV (7S, triple helical, and noncollagenous NC1) were compared for LBM glycation using AGE fluorescence, pentosidine quantitation, and immunoreactivity towards anti-AGE antibodies that recognize the AGE carboxymethyllysine (CML). Marked asymmetry was observed, with the flexible triple helical domain having the most pentosidine and fluorescent AGEs but the least CML. The in vivo relevance of these findings is supported by preliminary studies of AGE distribution in renal basement membrane (RBM) collagen IV domains from human kidneys of two insulin-dependent diabetics and one normal subject. Pentosidine and fluorescent AGE distributions of diabetic RBM were similar to LBM, but the CML AGE in diabetic kidney was less in the triple helical domain than in NC1. Our results support the hypothesis that nonenzymatic glycation of collagen IV contributes to the thickening of basement membranes, a hallmark of diabetic nephropathy.
Transplantation of A2 or A2B kidneys into B and O patients is clinically equivalent to that of ABO-compatible transplantation when recipients are selected by low pretransplant anti-A titer histories. This approach increases access of blood group B recipients to kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.