Abstract. The runoff from a snow cover during spring snowmelt or rain-on-snow events is an important factor in the hydrological cycle. In this study, three water balance schemes for the 1 dimensional physically-based snowpack model SNOWPACK are compared to lysimeter measurements at two alpine sites with a seasonal snow cover, but with different climatological conditions: Weissfluhjoch (WFJ) and Col de Porte (CDP). The studied period consists of 14 and 17 yr, respectively. The schemes include a simple buckettype approach, an approximation of Richards Equation (RE), and the full RE. The results show that daily sums of snowpack runoff are strongly related to a positive energy balance of the snow cover and therefore, all water balance schemes show very similar performance in terms of Nash-Sutcliffe efficiency (NSE) coefficients (around 0.63 and 0.72 for WFJ and CDP, respectively) and r 2 values (around 0.83 and 0.72 for WFJ and CDP, respectively). An analysis of the runoff dynamics over the season showed that the bucket-type and approximated RE scheme release meltwater slower than in the measurements, whereas RE provides a better agreement. Overall, solving RE for the snow cover yields the best agreement between modelled and measured snowpack runoff, but differences between the schemes are small. On sub-daily time scales, the water balance schemes behave very differently. In that case, solving RE provides the highest agreement between modelled and measured snowpack runoff in terms of NSE coefficient (around 0.48 at both sites). At WFJ, the other water balance schemes loose most predictive power, whereas at CDP, the bucket-type scheme has an NSE coefficient of 0.39. The shallower and less stratified snowpack at CDP likely reduces the differences between the water balance schemes. Accordingly, it can be concluded that solving RE for the snow cover improves several aspects of modelling snow cover runoff, especially for deep, sub-freezing snow covers and in particular on the sub-daily time scales. The additional computational cost was found to be in the order of a factor of 1.5-2.
ABSTRACT. Many snow models have been developed for various applications such as hydrology, global atmospheric circulation models and avalanche forecasting. The degree of complexity of these models is highly variable, ranging from simple index methods to multi-layer models that simulate snow-cover stratigraphy and texture. In the framework of the Snow Model Intercomparison Project (SnowMIP), 23 models were compared using observed meteorological parameters from two mountainous alpine sites.The analysis here focuses on validation of snow energy-budget simulations. Albedo and snow surface temperature observations allow identification of the more realistic simulations and quantification of errors for two components of the energy budget: the net short-and longwave radiation. In particular, the different albedo parameterizations are evaluated for different snowpack states (in winter and spring). Analysis of results during the melting period allows an investigation of the different ways of partitioning the energy fluxes and reveals the complex feedbacks which occur when simulating the snow energy budget. Particular attention is paid to the impact of model complexity on the energy-budget components. The model complexity has a major role for the net longwave radiation calculation, whereas the albedo parameterization is the most significant factor explaining the accuracy of the net shortwave radiation simulation.
Abstract. This paper describes ESM-SnowMIP, an international coordinated modelling
effort to evaluate current snow schemes, including snow schemes that are
included in Earth system models, in a wide variety of settings against local
and global observations. The project aims to identify crucial processes and
characteristics that need to be improved in snow models in the context of
local- and global-scale modelling. A further objective of ESM-SnowMIP is to
better quantify snow-related feedbacks in the Earth system. Although it is
not part of the sixth phase of the Coupled Model Intercomparison Project
(CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface,
Snow and Soil Moisture Model Intercomparison (LS3MIP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.