The circulation of the Northern Hemisphere extratropical troposphere has changed over recent decades, with marked decreases in extratropical cyclone activity and eddy kinetic energy (EKE) in summer and increases in the fraction of precipitation that is convective in all seasons. Decreasing EKE in summer is partly explained by a weakening meridional temperature gradient, but changes in vertical temperature gradients and increasing moisture also affect the mean available potential energy (MAPE), which is the energetic reservoir from which extratropical cyclones draw. Furthermore, the relation of changes in mean thermal structure and moisture to changes in convection associated with extratropical cyclones is poorly understood. Here we calculate trends in MAPE for the Northern extratropics in summer over the years 1979–2017, and we decompose MAPE into both convective and nonconvective components. Nonconvective MAPE decreased over this period, consistent with decreases in EKE and extratropical cyclone activity, but convective MAPE increased, implying an increase in the energy available to convection. Calculations with idealized atmospheres indicate that nonconvective and convective MAPE both increase with increasing mean surface temperature and decrease with decreasing meridional surface temperature gradient, but convective MAPE is relatively more sensitive to the increase in mean surface temperature. These results connect changes in the atmospheric mean state with changes in both large-scale and convective circulations, and they suggest that extratropical cyclones can weaken even as their associated convection becomes more energetic.
Peak eustatic sea level (ESL), or minimum ice volume, during the protracted marine isotope stage 11 (MIS11) interglacial at ;420 ka remains a matter of contention. A recent study of high-stand markers of MIS11 age from the tectonically stable southern coast of South Africa estimated a peak ESL of 13 m. The present study refines this estimate by taking into account both the uncertainty in the correction for glacial isostatic adjustment (GIA) and the geographic variability of sea level change following polar ice sheet collapse. In regard to the latter, the authors demonstrate, using gravitationally self-consistent numerical predictions of postglacial sea level change, that rapid melting from any of the three major polar ice sheets (West Antarctic, Greenland, or East Antarctic) will lead to a local sea level rise in southern South Africa that is 15%-20% higher than the eustatic sea level rise associated with the ice sheet collapse. Taking this amplification and a range of possible GIA corrections into account and assuming that the tectonic correction applied in the earlier study is correct, the authors revise downward the estimate of peak ESL during MIS11 to 8-11.5 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.