We report a direct comparison of microwave heating and conventional heating in solvent extraction by using exactly the same reaction conditions (including heating rate) in the extraction of polyphenols from dried sea buckthorn leaves. We have for the first time decoupled the effects of bulk heating rate and mixing regime from the fundamental microwave heating mechanism.We show that although microwave selective heating can increase the yield and quality of the polyphenols extracted, if the same bulk heating rate is applied there is no difference in treatment time and therefore theoretical energy requirements of the process. The first implication of these results for process intensification is that if microwave selective heating can be enhanced in scaled up processes through electromagnetic design, the extract yield and quality may be increased further. The second implication is that conventional extraction processes could be designed to provide the same heating rate and hence treatment time as microwave extraction, but any potential energy and space savings would have to be balanced against the increase in capital cost and complexity of the equipment. That said, the very small penetration depth of microwaves into ethanol/water solvent also poses design challenges in the scale up of microwave equipment.
This study uses a combination of empirical observations and an analysis of mass transfer behaviour to yield new insights into the mechanism of microwave assisted extraction. Enhancements in extraction rate and yield were observed experimentally compared with conventional extraction at temperatures in excess of 50°C, however at lower temperatures there was no observable difference between the two processes. A step-change in extract yield between microwave and conventional processes was shown to be caused by selective heating. A temperature gradient of the order of 1 o C is sufficient to reduce the water chemical potential within the cell structure, which changes the osmotic potential such that internal cell pressures can increase to the point where disruption occurs. This paper demonstrates the need to operate microwave extraction processes at a temperature that enables selective heating, and a newly-proposed mass transfer phenomenon that could have wider positive implications for extraction and leaching processes.2
Highlights
Conventional and microwave-assisted extraction of “hairy” pectin from sugar beet.
Determined effect of heating method, temperature, time & pH on yield & composition.
No difference between microwave and conventional extraction under conditions tested.
Strong alkaline is favoured in rhamnogalacturonan-I “hairy” pectin extraction.
Hydrothermal water extraction can be an alternative to strong alkaline extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.