The absence of head-to-head trials is a common challenge in comparative effectiveness research and health technology assessment. Indirect cross-trial treatment comparisons are possible, but can be biased by cross-trial differences in patient characteristics. Using only published aggregate data, adjustment for such biases may be impossible. Although individual patient data (IPD) would permit adjustment, they are rarely available for all trials. However, many researchers have the opportunity to access IPD for trials of one treatment, a new drug for example, but only aggregate data for trials of comparator treatments. We propose a method that leverages all available data in this setting by adjusting average patient characteristics in trials with IPD to match those reported for trials without IPD. Treatment outcomes, including continuous, categorical and censored time-to-event outcomes, can then be compared across balanced trial populations. The proposed method is illustrated by a comparison of adalimumab and etanercept for the treatment of psoriasis. IPD from trials of adalimumab versus placebo (n = 1025) were re-weighted to match the average baseline characteristics reported for a trial of etanercept versus placebo (n = 330). Re-weighting was based on the estimated propensity of enrolment in the adalimumab versus etanercept trials. Before matching, patients in the adalimumab trials had lower mean age, greater prevalence of psoriatic arthritis, less prior use of systemic treatment or phototherapy, and a smaller mean percentage of body surface area affected than patients in the etanercept trial. After matching, these and all other available baseline characteristics were well balanced across trials. Symptom improvements of ≥75% and ≥90% (as measured by the Psoriasis Area and Severity Index [PASI] score at week 12) were experienced by an additional 17.2% and 14.8% of adalimumab-treated patients compared with the matched etanercept-treated patients (respectively, both p < 0.001). Mean percentage PASI score improvements from baseline were also greater for adalimumab than for etanercept at weeks 4, 8 and 12 (all p < 0.05). Matching adjustment ensured that this indirect comparison was not biased by differences in mean baseline characteristics across trials, supporting the conclusion that adalimumab was associated with significantly greater symptom reduction than etanercept for the treatment of moderate to severe psoriasis.
In the last 5 years, regulatory agencies and drug monitoring centres have been developing computerised data-mining methods to better identify reporting relationships in spontaneous reporting databases that could signal possible adverse drug reactions. At present, there are no guidelines or standards for the use of these methods in routine pharmaco-vigilance. In 2003, a group of statisticians, pharmaco-epidemiologists and pharmaco-vigilance professionals from the pharmaceutical industry and the US FDA formed the Pharmaceutical Research and Manufacturers of America-FDA Collaborative Working Group on Safety Evaluation Tools to review best practices for the use of these methods.In this paper, we provide an overview of: (i) the statistical and operational attributes of several currently used methods and their strengths and limitations; (ii) information about the characteristics of various postmarketing safety databases with which these tools can be deployed; (iii) analytical considerations for using safety data-mining methods and interpreting the results; and (iv) points to consider in integration of safety data mining with traditional pharmaco-vigilance methods. Perspectives from both the FDA and the industry are provided. Data mining is a potentially useful adjunct to traditional pharmaco-vigilance methods. The results of data mining should be viewed as hypothesis generating and should be evaluated in the context of other relevant data. The availability of a publicly accessible global safety database, which is updated on a frequent basis, would further enhance detection and communication about safety issues.
A principle concern of pharmacovigilance is the timely detection of adverse drug reactions that are novel by virtue of their clinical nature, severity and/or frequency. The cornerstone of this process is the scientific acumen of the pharmacovigilance domain expert. There is understandably an interest in developing database screening tools to assist human reviewers in identifying associations worthy of further investigation (i.e., signals) embedded within a database consisting largely of background 'noise' containing reports of no substantial public health significance. Data mining algorithms are, therefore, being developed, tested and/or used by health authorities, pharmaceutical companies and academic researchers. After a focused review of postapproval drug safety signal detection, the authors explain how the currently used algorithms work and address key questions related to their validation, comparative performance, deployment in naturalistic pharmacovigilance settings, limitations and potential for misuse. Suggestions for further research and development are offered.
The aim of this study was to evaluate the effect of oralN‐acetylcysteine in the prevention of re-hospitalisation for chronic obstructive pulmonary disease (COPD) exacerbations.Using the PHARmacoMOrbidity linkage (PHARMO) system the authors included all patients aged ≥55 yrs who had been dispensed medication, labelled for respiratory indications (anatomical therapeutic chemical (ATC) classification system: R03), between 1986–1998 and who had also been hospitalised for COPD (International Classification of Diseases (ICD)‐9: 491, 492, 496) in this time frame. These subjects were subsequently divided into two groups, those who had receivedN‐acetylcysteine following discharge from their first admission between 1986–1998 and those who had not. All the patients were studied starting from their initial discharge, until their first readmission, death or end of data collection period. The maximum follow-up period was 1 yr.A total of 1,219 patients, who were hospitalised for COPD between 1986–1998, were included in this study. After adjustment for disease severity, it was observed that the use ofN‐acetylcysteine was significantly associated with a reduced risk of readmission. The readmission risk was significantly lower in patients with high average daily doses ofN‐acetylcysteine.In conclusion it was observed thatN‐acetylcysteine reduces the risk of re-hospitalisation for chronic obstructive pulmonary disease by ∼30% and that this risk reduction is dose-dependent.
The persistence rate of ICS is poor. Preventing early treatment discontinuation may be important to ensure maximal benefit from ICS treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.