In chronic kidney disease, vascular calcification, renal osteodystrophy, and phosphate contribute substantially to cardiovascular risk and are components of CKD-mineral and bone disorder (CKD-MBD). The cause of this syndrome is unknown. Additionally, no therapy addresses cardiovascular risk in CKD. In its inception, CKD-MBD is characterized by osteodystrophy, vascular calcification, and stimulation of osteocyte secretion. We tested the hypothesis that increased production of circulating factors by diseased kidneys causes the CKD-MBD in diabetic mice subjected to renal injury to induce stage 2 CKD (CKD-2 mice). Compared with non-CKD diabetic controls, CKD-2 mice showed increased renal production of Wnt inhibitor family members and higher levels of circulating Dickkopf-1 (Dkk1), sclerostin, and secreted klotho. Neutralization of Dkk1 in CKD-2 mice by administration of a monoclonal antibody after renal injury stimulated bone formation rates, corrected the osteodystrophy, and prevented CKD-stimulated vascular calcification. Mechanistically, neutralization of Dkk1 suppressed aortic expression of the osteoblastic transcription factor Runx2, increased expression of vascular smooth muscle protein 22-a, and restored aortic expression of klotho. Neutralization of Dkk1 did not affect the elevated plasma levels of osteocytic fibroblast growth factor 23 but decreased the elevated levels of sclerostin. Phosphate binder therapy restored plasma fibroblast growth factor 23 levels but had no effect on vascular calcification or osteodystrophy. The combination of the Dkk1 antibody and phosphate binder therapy completely treated the CKD-MBD. These results show that circulating Wnt inhibitors are involved in the pathogenesis of CKD-MBD and that the combination of Dkk1 neutralization and phosphate binding may have therapeutic potential for this disorder. CKD is a pandemic affecting 26 million Americans in its early stages. 1 CKD is associated with high rates of cardiovascular mortality, making it much more likely that affected individuals will sustain cardiovascular morbidity, including death, than reach end stage kidney disease that requires RRT.
The chronic kidney disease-mineral and bone disorder (CKD-MBD) syndrome is an extremely important complication of kidney diseases. Here we tested whether CKD-MBD causes vascular calcification in early kidney failure by developing a mouse model of early CKD in a background of atherosclerosis stimulated arterial calcification. CKD equivalent in glomerular filtration reduction to human CKD stage 2 stimulated early vascular calcification and inhibited the tissue expression of α-klotho (klotho) in the aorta. In addition, osteoblast transition in the aorta was stimulated by early CKD as shown by the expression of the critical transcription factor, RUNX2. The ligand associated with the klotho-fibroblast growth factor receptor complex, FGF23, was found to be expressed in the vascular media of sham operated mice. Its expression was decreased in early CKD. Increased circulating levels of the osteocyte secreted proteins, FGF23, and sclerostin may have been related to increased circulating klotho levels. Finally, we observed low turnover bone disease with a reduction in bone formation rates more than bone resorption. Thus, the CKD-MBD, characterized by cardiovascular risk factors, vascular calcification, increased circulating klotho, FGF23 and sclerostin levels, and low turnover renal osteodystrophy, was established in early CKD. Early CKD caused a reduction of vascular klotho, stimulated vascular osteoblastic transition, increased osteocytic secreted proteins, and inhibited skeletal modeling producing the CKD-MBD.
25-hydroxyvitamin D [25(OH)D] may not optimally indicate vitamin D receptor activity. Higher concentrations of its catabolic product 24,25-dihydroxyvitmin D [24,25(OH)D] and a higher ratio of 24,25(OH)D to 25(OH)D (the vitamin D metabolite ratio [VMR]) may provide additional information on receptor activity. We compared the strength of associations of these markers with serum PTH concentrations, hip bone mineral density (BMD), and risk of incident hip fracture in community-living older participants in the Cardiovascular Health Study. Among 890 participants, the mean age was 78years, 60% were women, and the mean 25(OH)D was 28±11ng/ml. In cross-sectional analysis, the strength of association of each vitamin D measure with PTH was similar; a 1% higher 25(OH)D, 24,25(OH)D, and VMR were associated with 0.32%, 0.25%, and 0.26% lower PTH, respectively (p<0.05 for all). Among 358 participants with available BMD data, we found no associations of 25(OH)D or VMR with BMD, whereas higher 24,25(OH)D was modestly associated with greater hip BMD (1% higher 24,25(OH)D associated with 0.04% [95% CI 0.01-0.08%] higher BMD). Risk of incident hip fracture risk was evaluated using a case-cohort design. There were 289 hip fractures during a mean follow up time of 8.4years. Both higher 24,25(OH)D and VMR were associated with lower risk of hip fracture (HR per SD higher, 0.73 [0.61, 0.87] and 0.74 [0.61, 0.88], respectively) whereas 25(OH)D was not associated with hip fracture (HR 0.93 [0.79, 1.10]). We conclude that evaluating vitamin D status by incorporating assessment of 24,25(OH)D and the VMR provides information on bone health above and beyond 25(OH)D alone.
This study examined changes in choline acetyltransferase and calcitonin gene-related peptide immunoreactivity in hypoglossal motoneurons of rats at 1, 3, 7, 20 and 50 days after three types of nerve injury: crush, transection and resection. Peripheral reinnervation was assayed by retrograde labelling of the motoneurons after injections of the exogenous protein, horseradish peroxidase, into the tongue. Maximal reduction in choline acetyltransferase immunostaining occurred at seven days after nerve damage and the amount of the decrease was related to the nature of the injury. The recovery of choline acetyltransferase to normal levels was related to the timing of reinnervation after nerve crush, but not after transection or resection injuries. In contrast to these findings, a rapid increase in calcitonin gene-related peptide immunoreactivity preceded the decrease in choline acetyltransferase levels. A striking increase in calcitonin gene-related peptide immunoreactivity was observed at one day postoperative and was maximal at three days postoperatively for all injuries. Later changes in calcitonin gene-related peptide levels were dependent on the type injury. Increased calcitonin gene-related peptide staining persisted to 20 days after nerve crush. After nerve transection or resection, calcitonin gene-related peptide immunoreactivity decreased to basal levels at seven days postoperatively. This declination was followed by a second rise in calcitonin gene-related peptide immunolabeling at 20 days for nerve transection or 50 days after resection. Nearly complete reinnervation was established by 20 days after nerve crush. At 50 days after transection, less than half the number of normally-labelled neurons contained horseradish peroxidase. At this time only 1% of those whose axons had been resected were labelled. These observations suggest that different mechanisms regulate the responses of choline acetyltransferase and calcitonin gene-related peptide to nerve injury. The present results indicate that choline acetyltransferase levels in motoneurons can not be used to predict either the likelihood of or the timing of reinnervation after nerve transection or resection. However, our results strengthen the premise that an increased of calcitonin gene-related peptide immunoreactivity serves as a reliable index for predicting nerve regeneration/reinnervation after cranial nerve injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.