Resumo: Atualmente a geração de resíduos industriais tem sido uma grande preocupação para sociedade e o meio-ambiente em que vivemos, por afetar diretamente as nossas vidas, seja por poluição, adequação às mudanças do ambiente, entre outras. Uma das indústrias que mais geram resíduos, atualmente, são as indústrias siderúrgicas que realizam vários processos para o aprimoramento e refino do metal bruto encontrado na natureza. A aciaria é a unidade de uma usina siderúrgica onde se gera uma grande quantidade de resíduos sólidos ou até mesmo líquidos que são de grande importância pela sua reutilização em diversos setores como na produção de cimentos, estradas entre outros. Dois importantes resíduos de aciaria são a escória e a lama. A identificação e quantificação dos metais presentes nos resíduos de aciarias é o primeiro passo para o entendimento de como esses resíduos podem ser manipulados e transformados em novos insumos industriais ou produtos comercializáveis, ajudando na redução de resíduos descartados e aumentando a eficiência da indústria. Este trabalho tem como objetivo identificar e quantificar os metais presentes na lama de aciaria, e propor sua destinação. Análises químicas e físicas foram realizadas em laboratório para identificar e quantificar a lama de aciaria, sendo que o metal presente com maior quantidade em massa foi o ferro, porém bem abaixo do esperado, limitando sua aplicação, portanto, foi proposto a utilização da lama como agregado miúdo na fabricação de lajotas e outros materiais cerâmicos. Palavras-chaves:Siderurgia. Resíduo sólido. Lama de aciaria.Abstract: Currently the generation of industrial waste has been a great concern for society and the environment in which we live, because it directly affects our lives, whether by pollution, adaptation to environmental changes, among others. One of the industries that generate the most waste today is the steel industry that performs several processes for the improvement and refining of the raw metal found in nature. The steelworks is the unit of a steel industry where a large amount of solid or even liquid wastes are generated which are of great importance for their reuse in various sectors such as the production of cements, roads and others. Two important waste of steelworks are slag and sludge. The identification and quantification of the metals present in steelworks waste is the first step in understanding how these wastes can be handled and transformed into new industrial inputs or marketable products, helping to reduce discarded waste and increasing the efficiency of the industry. This work aims to identify and quantify the metals present in the slurry of steelworks, and to propose its destination. Chemical and physical analyzes were carried out in the laboratory to identify and quantify the sludge of steelworks, and the metal present with the greatest mass was the iron, but well below the expected, limiting its application, therefore, it was proposed to use the sludge as aggregate in the manufacture of tiles and other ceramic materials.
This work presents a new method for forward variable selection and calibration and its evaluation for manganese determination in steel by laser-induced breakdown spectroscopy (LIBS). A compact and low-cost LIBS instrument was used, based on a microchip laser and a grating mini-spectrometer containing a non-intensified, non-gated, and non-cooled linear sensor array. Sixty steel samples were analyzed, with known manganese concentrations from 0.106 to 1.696 wt%. The spectra (1757 variables between 200 and 850 nm) were acquired under the continuous application of laser pulses at 100 Hz and using 80, 400, and 1000 ms integration times. The new method generated a mathematic combination of the selected variables and the results were calibrated against the manganese content by linear or quadratic regression. The best results were obtained using the spectra from all integration times together, with 31 selected variables and root mean square errors of cross-validation and prediction of 0.015 and 0.033, respectively. Compared to Jack-knife partial least squares regression, the new method presented lower prediction errors and numbers of selected variables, with the advantages of no data pretreatment and a simpler mathematic calculation. Graphical abstract New method for forward variable selection and calibration applied to manganese determination in steel by laser induced breakdown spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.